Specifying Standby Generator Set Requirements for Data Centers

PowerHour webinar series for consulting engineers **Experts you trust. Excellence you count on.**

08/10/22 Noon Eastern / 9 AM Pacific

Welcome!

Cummins PowerHour webinar series is designed to help our engineer partners to...

- Keep up to date on products, technology, and codes and standards development
- Interact with Cummins experts and gain access to ongoing technical support
- Participate at your convenience, live or on-demand
- Earn Professional Development Hours (PDH)

Technical tips:

- Audio is available through teleconference or Zoom application.
- Attendees are in "listen only" mode throughout the event.
- Use the Zoom Q&A Panel to submit questions, comments, and feedback throughout the event. Time is allotted at the end of the PowerHour to address Q&A.
- If the audio connection is lost, disconnected or experiences intermittent connectivity issues, please check your audio connection through the "Join Audio" or "Audio Connectivity" button at the bottom left of the Zoom application.
- Report technical issues using the Zoom Q&A Panel.

Asking a Question:

Q&A Button:

- For technical questions on today's topic
- Ask at anytime
- Not all questions may get answered but we'll do our best!

Chat Button:

• For general PowerHour or Zoom questions

Meet your panelists

Cummins instructor and panelists:

Mark Taylor Technical Marketing Advisor Cummins Inc.

Earnest Glaser Senior Sales Application Engineer Cummins Inc.

Andrew Panning Engineering Technical Specialist Cummins Inc.

Cummins facilitator:

Chad Hale Technical Marketing Specialist Cummins Inc.

Disclaimer

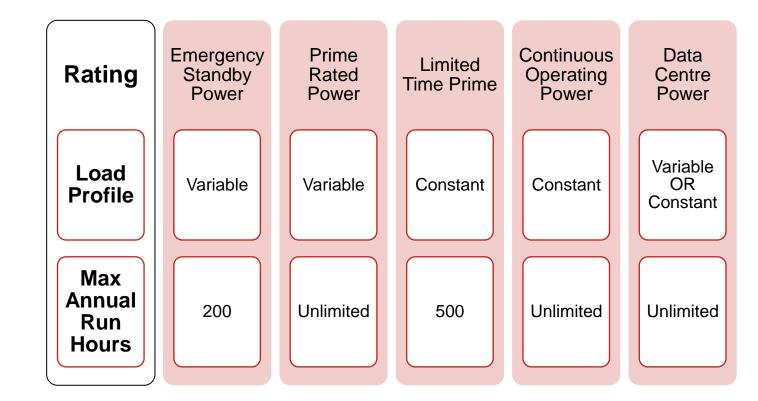
The views and opinions expressed in this course shall not be considered the official position of any regulatory organization and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Participants are encouraged to refer to the entire text of all referenced documents. In addition, when it doubt, reach out to the Authority Having Jurisdiction.

Course Objectives

Data Center Design Challenges: Specifying Standby Generator Set Requirements

Data centers are unique, not only in their design for utmost reliability and cost-effectiveness, but also in their load profiles. Data center loads can pose unique challenges that may significantly differ from their "traditional" industrial or commercial standby counterparts. Differences may include power factor, nonlinear loads leading to harmonic voltage distortion, and load acceptance of active power. This PowerHour is here to help by exploring some of the load characteristics that are unique to data centers, and provide some generator set specification advice to help you mitigate some of those challenges.

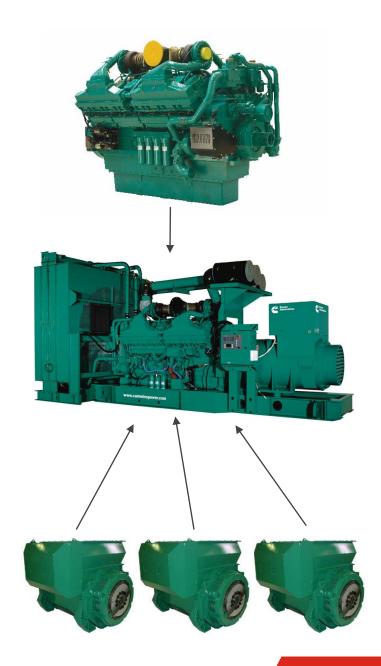

After completing this course, participants will be able to:

- Identify safe alternator operating zones on an alternator reactive capability chart to ensure proper operating conditions on the generator
- Recognize how a generator accepts different loads typical to data center applications and define specification requirements and operating sequences for each type
- Recognize the tradeoffs in properly specifying an alternator for data center applications

What are some examples of data center power system design challenges you have encountered?

Generator Set Ratings

- ISO 8528 ratings overview
- Uptime Institute requirements



Generator Set Ratings

- ISO 8528 ratings overview
- Uptime Institute requirements

Considerations for Generator Set Selection

- Altitude and temperature derate
- Overview of loads

Generator Set Ratings

- ISO 8528 ratings overview
- Uptime Institute requirements

Considerations for Generator Set Selection

- Altitude and temperature derate
- Overview of loads

Generator Set Sizing Software

- Fundamentals of inputting loads
- How to use Cummins GenSize

			Set Recommendatio	ns										
enseti	Recommen													RF
<u>د ک</u>	Navigation Opti	ons	Recomment	dation Options	Ē	Report Options		¥ 4	GenCalc Option	Ly (3	20	generator sets	recomme
· /	Back Access		te Single/All	Project	Recommend	ed Step/Load Step	All Remote	Radiator Remote	Alternator F		ISL DOCK	Display gense Display recom		
	MOC	Specificat	ions Generator S	ets Summary	Genset	Dips Re	eports von		, be current	owing the				
	_		_		_							_		
		Max. Step	Max. Step	Peak Voltage	Peak Frequenc	y Site Rated Standby	Site Rated Altr	Site Rated Altr	Site Rated	Site Rated Max		Temp Rise at Full		THOV
Report	Model	Voltage Dip	Frequency Dip		Dip	kw/kva	Max. kW 125°C	Max. kVA 125°C	Max. SkW	Step KW Limit	Max. SkVA	Load	Excitation	Limit
	1750UGKHD					12020002	1/92	2190	1400		0/10	100	PMG	
	1750DQKAD	8	4			1734/2168	1752	2190	2029		6716	125	PMG	٢
	1750DQKAD					1202/1502	1752	2190	1406		6716	125	PMG	
	1750DQKAD	8	4			1734/2168	1980	2475	2035		7361	105	PMG	٢
	1750DQKAD					1202/1502	1980	2475	1410		7361	105	PMG	
	1750DQKAD	8	4			1734/2168	2285	2856	2021		7267	80	PMG	٢
	1750DOKAD					1202/1502	2285	2856	1400		7267	80	PMG	
	1750DQKAD	8	4			1734/2168	1980	2475	2035		7361	80	PMG	\bigcirc
	1750DQKAD					1202/1502	1980	2475	1410		7361	80	PMG	
	1750DOKAA'					1533/1917	1752	2190	1772		6716		PMG	
						15 2 2 1 4 1 2	1000					105	2110	
Project Re	quirements	d Running/Surge I	Requirements	Generator Set Conf	figuration	ransient Performance De	etails	its						
Frequency, Hz		60 Hz Site Altitude, ft(m)			5900(1798)									
Duty					Standby Site	tandby Site Temperature, °C(*F)			40(104)					
Voltage				277/480, Series Wye Max. Altr Temp Rise, *C				125						
Phase				Project Voltage Distortion Limit, %										

Generator Set Ratings

- ISO 8528 ratings overview
- Uptime Institute requirements

Considerations for Generator Set Selection

- Altitude and temperature derate
- Overview of loads

Generator Set Sizing Software

- Fundamentals of inputting loads
- How to use Cummins GenSize

Emissions and Air Permitting of Generator Sets

- Meeting EPA and Local requirements
- Overview of emissions constituents, data sheets

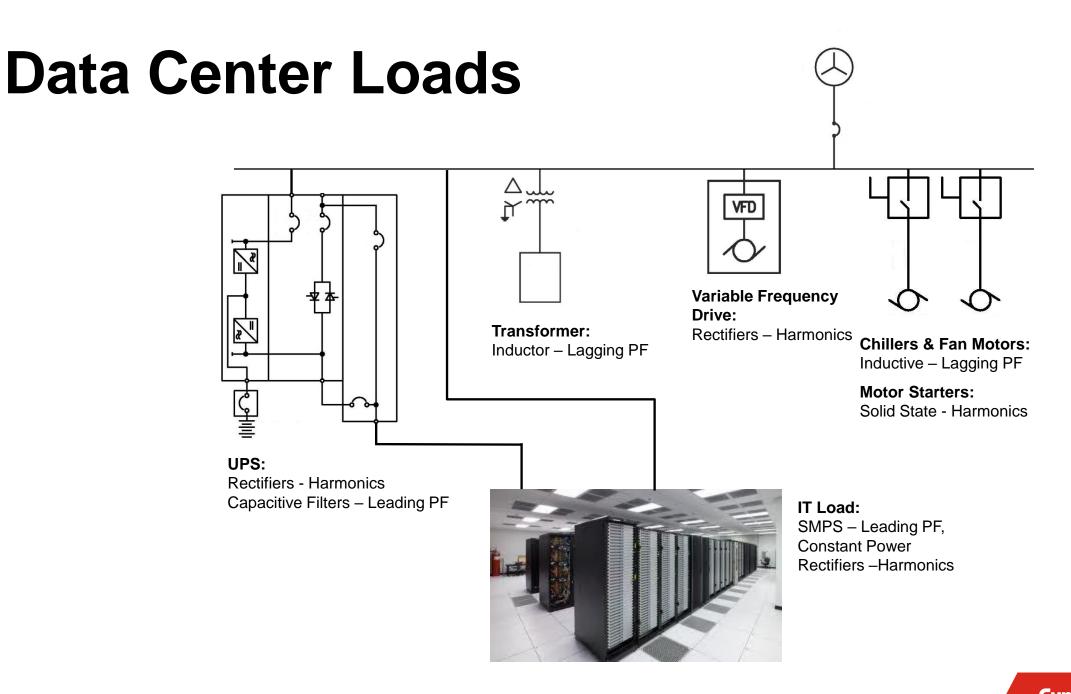
Generator Set Ratings

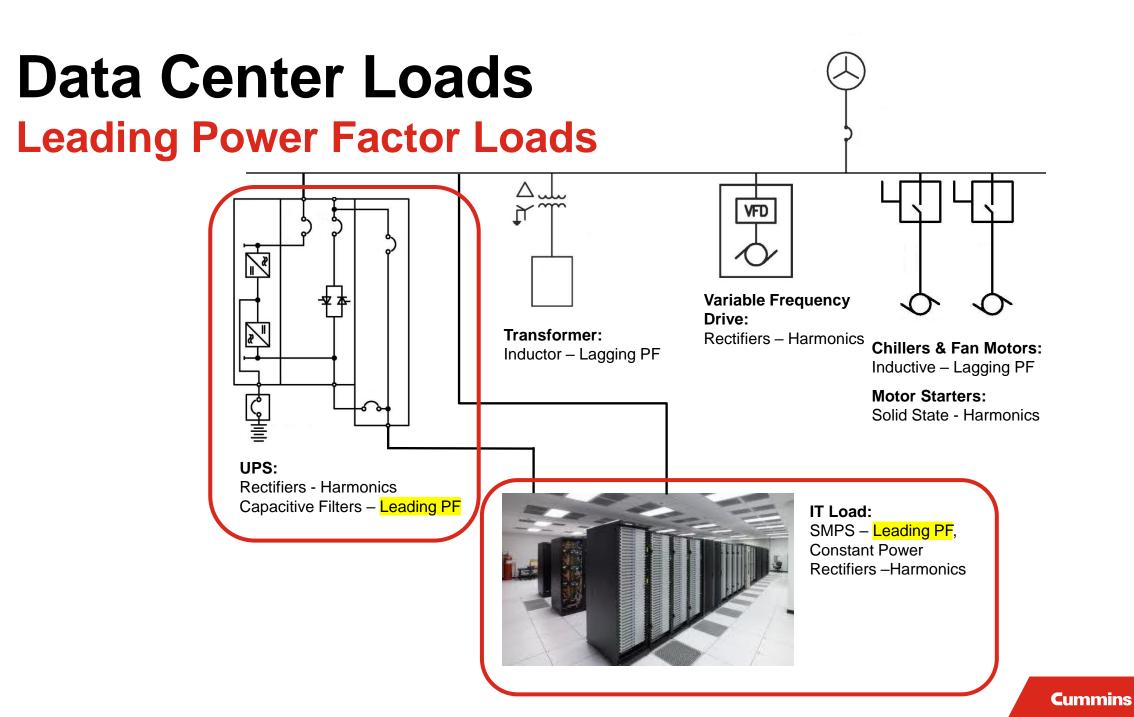
- ISO 8528 ratings overview
- Uptime Institute requirements

Considerations for Generator Set Selection

- Altitude and temperature derate
- Overview of loads

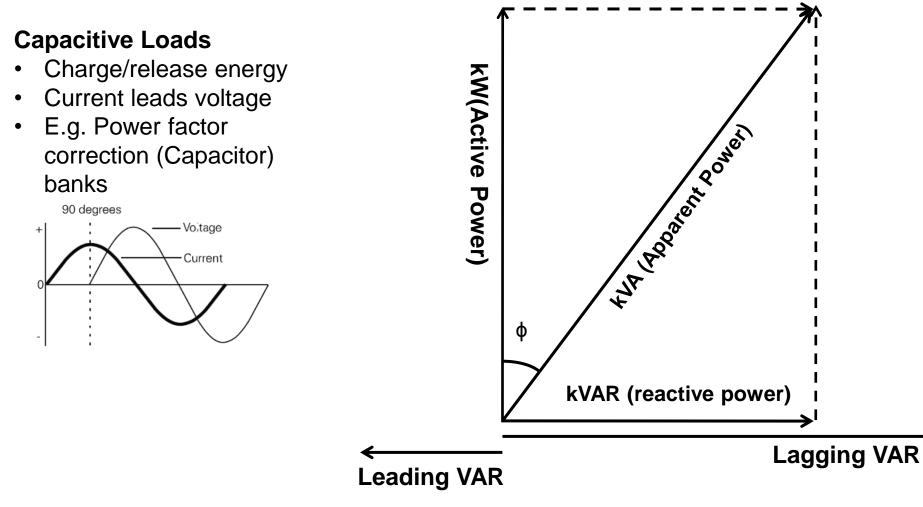
Generator Set Sizing Software

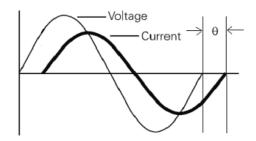

- · Fundamentals of inputting loads
- How to use Cummins GenSize


Emissions and Air Permitting of Generator Sets

- Meeting EPA and Local requirements
- Overview of emissions constituents, data sheets

Related Content PowerHour Recordings • Generator Set Ratings for Data Centers and Other Applications • Considerations for Generator Set Selection

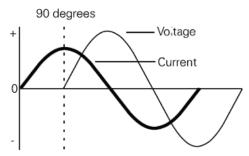

- Introduction to GenSize
- <u>Advanced: Transient Performance and Motor Loads</u>
- Emissions and Air Permitting of Generator Sets

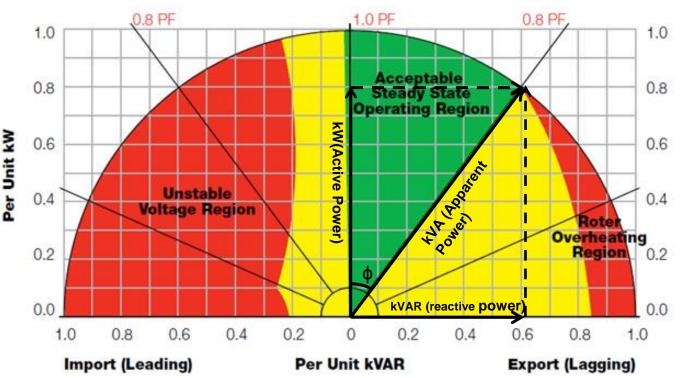

Leading Power Factor Loads

Importance of Power Factor

Inductive Loads

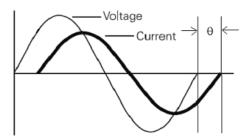
- Resists change to current
- Current lags voltage
- E.g. Motors

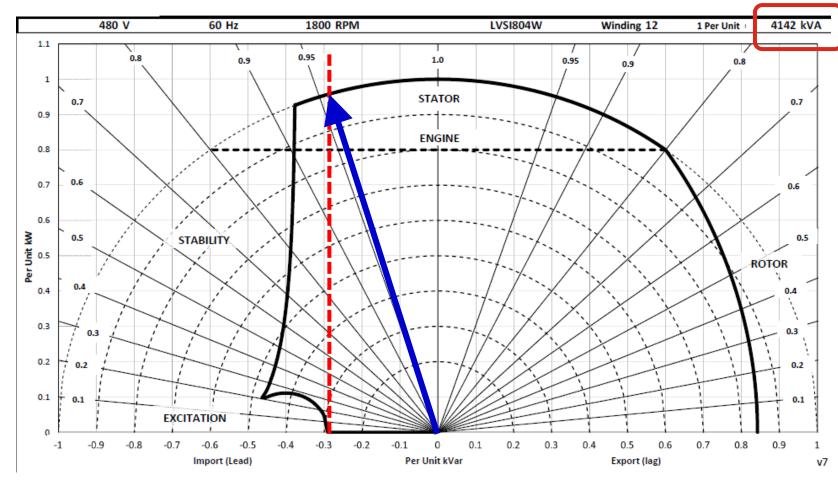



Leading Power Factor Loads

Importance of Power Factor

Capacitive Loads


- Charge/release energy
- Current leads voltage
- E.g. Power factor correction (Capacitor) banks


Inductive Loads

- Resists change to current
- Current lags voltage
- E.g. Motors

Leading Power Factor Loads Example Exercise

ALTERNATOR OPERATING CHART

Generator Set Rating: 3000 kW (3750 kVA @ 0.8 pf lagging)

Alternator Rating: 4142 kVA

Leading VAR capability ~ 0.3 pu

0.3 * 4142 = 1242 kVAR

Leading VAR capability = .33 pu based on genset rating (1242 / 3750 = .33)

Leading Power Factor Loads Example Exercise

480 V 60 Hz 1800 RPM LVSI804X Winding 12 1 Per Unit 4464 kVA 1.1 0.95 0.8 0.9 1.0 0.95 0.8 0.9 1 STATOR 0.7 0.7 0.9 ENGINE 0.8 0.6 0.7 0.6 0.6 Per Unit kW STABILITY 0.5 0.5 ROTOR 0.4 Lower X_d 0.4 0.3 0.3 0.2 0.2 0.1 EXCITATION 0.8 0.9 -1 -0.9 -0.4 -0.3-0.2 -0.10. 0.2 0.4 0.5 0.6 0.7 -1 Per Unit kVar Import (Lead) Export (lag) ν7

ALTERNATOR OPERATING CHART

Generator Set Rating: 3000 kW (3750 kVA @ 0.8 pf lagging)

Alternator rating: 4464 kVA

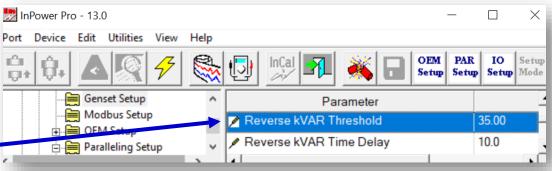
Leading VAR capability ~ 0.35 pu

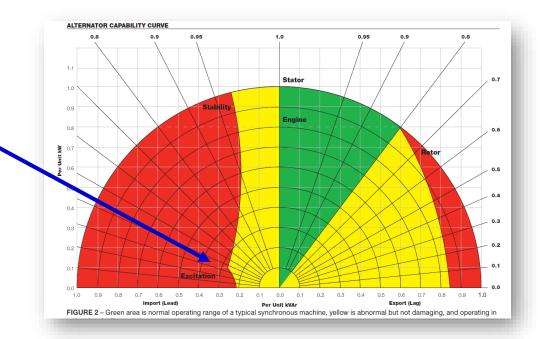
0.35 * 4464 = 1562 kVAR

Leading VAR capability = 0.41 pu based on genset rating (1562 / 3750 = .41)

Leading Power Factor Loads

Key Takeaways


Key parameter is leading VAR, not PF


 Set reverse VAR protection accordingly

Low kW, high leading VAR is a risk

- Avoid operation in this region
- Disconnect PF correction or filter caps
- Select "Gen mode" if UPS supports

Recommendation: If your loads are operating at low-leading or lagging power factors, request a capability curve to ensure your alternator is operating within its safe limits.

Concept Check

Which of the following statements is true:

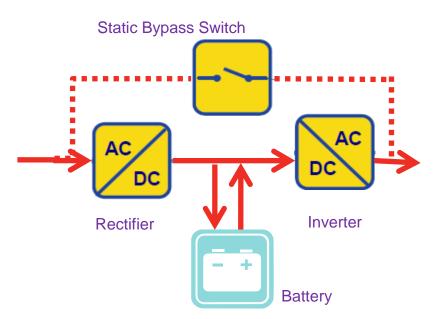
- a) A generator set's leading VAR capability can be determined from the alternator operating chart.
- b) Generator sets can operate at any power factor as long as there are power factor correction capacitors in the system.
- c) Generator sets can not operate at leading PF of less than .95.
- d) Generator sets can produce full rated output at any lagging power factor.

Concept Check

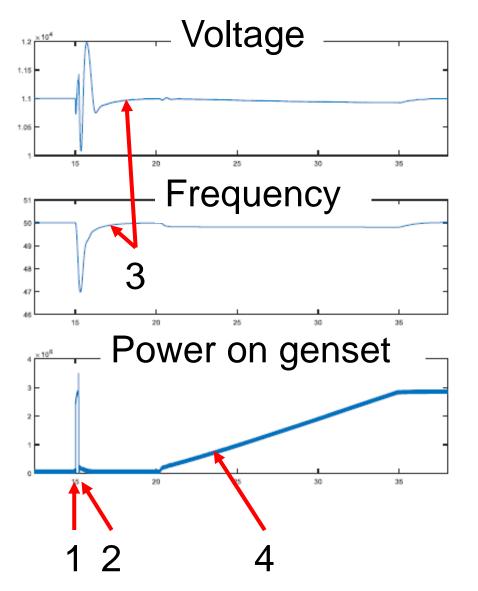
Which of the following statements is true:

- a) A generator set's leading VAR capability can be determined from the alternator operating chart.
- b) Generator sets can operate at any power factor as long as there are power factor correction capacitors in the system.
- c) Generator sets can not operate at leading PF of less than .95.
- d) Generator sets can produce full rated output at any lagging power factor.

Data Center Loads Constant Power Loads VFD Ц 2 Variable Frequency Drive: Transformer: Rectifiers – Harmonics **Chillers & Fan Motors:** Inductor – Lagging PF Inductive – Lagging PF Motor Starters: C E Solid State - Harmonics UPS: **Rectifiers - Harmonics** Capacitive Filters – Leading PF IT Load: SMPS – Leading PF, **Constant Power Rectifiers** –Harmonics

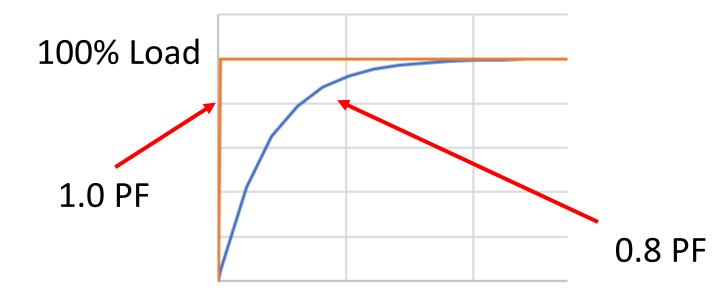

Constant Power Loads UPS with Walk-In Function

Server Switched Mode Power Supplies are active loads


- Draw constant power
- As voltage drops current is increased
- V/Hz doesn't help

UPS with walk-in allows gen to take on 100% active power load step

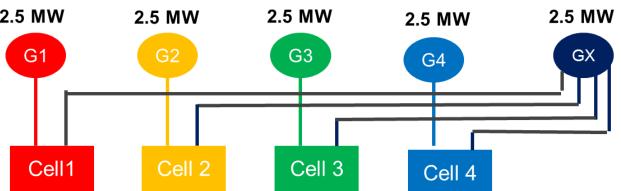
 Allows batteries to take the load initially and then ramp on to the gen


Constant Power Load Acceptance

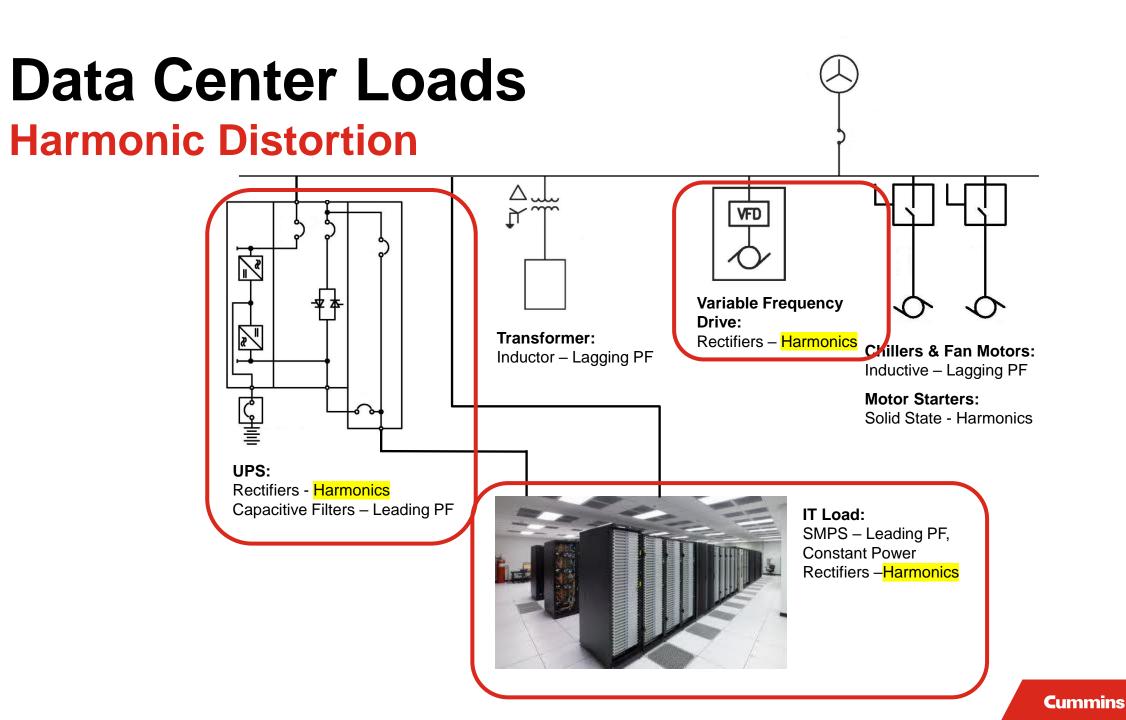
- 1. UPS senses voltage and frequency excursion
- 2. Transfers load to battery
- 3. Genset voltage and frequency recover and stabilize
- 4. UPS ramps load on to genset

Constant Power Loads Unity PF Transients

- Transient performance is typically documented at 0.8 PF
- Acceptance testing is typically done with resistive load banks (1.0 PF)
- Resistive loads often result in worse voltage transients than inductive loads

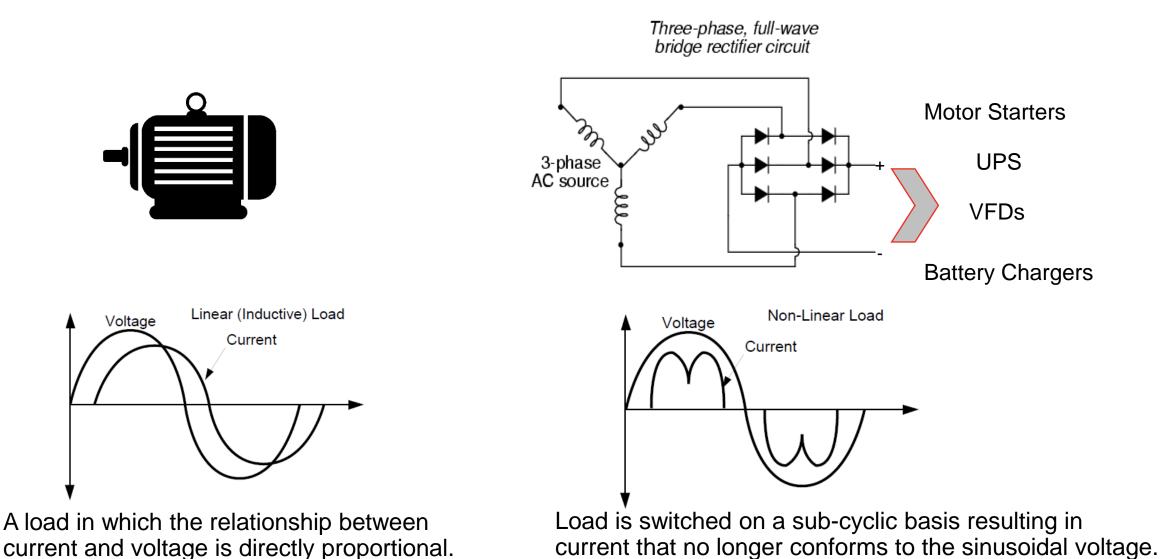


Testing at 0.8 PF

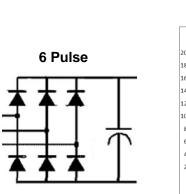

- Inductance creates a lag in kW load hitting the engine
- Governor response limits frequency dip
- V/Hz voltage roll off is reduced

Constant Power Loads Transient Spec Recommendation

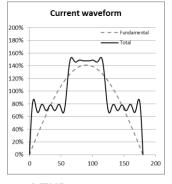
- Consider actual operating sequence
- Under what scenario will a 100% load acceptance be required?
 - Will this only occur in the event of a failover to a reserve gen?
 - Would a UPS walk-in function be more appropriate than a 100% load acceptance requirement?
 2.5 MW
 2.5 MW
- Specify realistic acceptance test



Spec Note Generator set manufacturer shall provide documentation from the manufacturer's sizing software demonstrating compliance with specified transient limits.

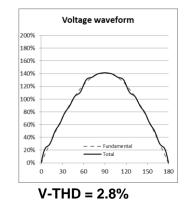

s 27

Harmonics and Non-Linear Loads

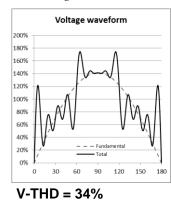

Cummins 28

Harmonic Distortion

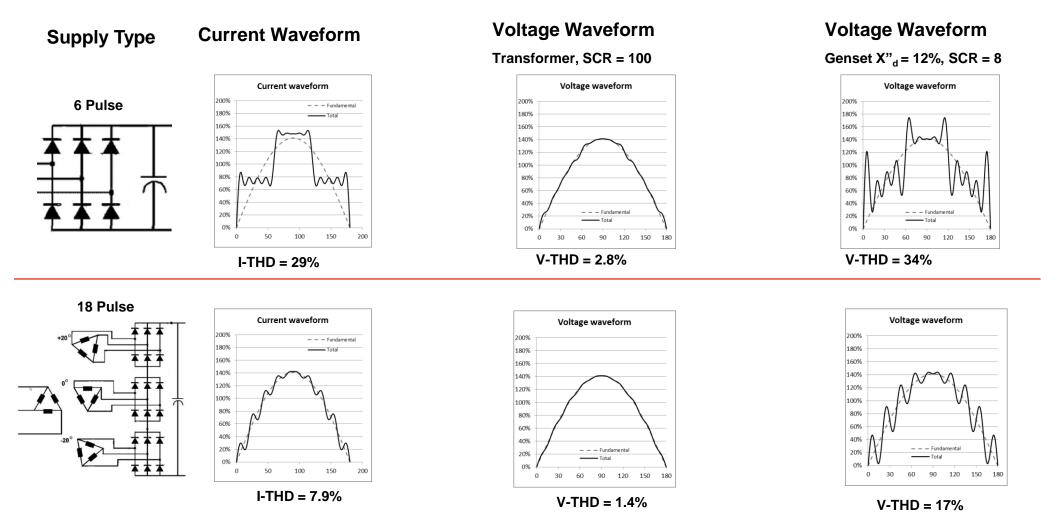
Supply Type



I-THD = 29%

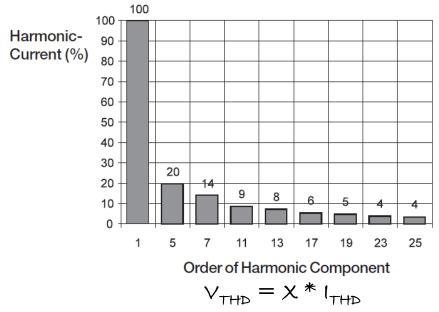

Voltage Waveform

Transformer, SCR = 100


Voltage Waveform

Genset X"_d = 12%, SCR = 8

Switching current on a sub-cyclic basis results in a distorted current waveform The source (generator or utility transformer) induces current harmonic distortion on to the voltage waveform Induced voltage harmonic distortion is proportional to source impedance (inversely proportional to short circuit ratio)


Harmonic Distortion

Switching circuit and the source impedance both affect voltage harmonic distortion

Power System Harmonics Key Takeaways

- Harmonic Voltage Distortion is a function of load generated current distortion and the source impedence
 - For a generator set source impedence is the subtransient reactance X"d
 - Harmonic distortion will be worse when running on a generator than on the utility
- Harmonic distortion does not impact performance of alternators with separate excitation system
- Use generator sizing software to select generator set that will keep harmonic distortion within acceptable limits
 - This results in an optimally sized alternator

	Fields marked (*) are required
ad Name : * Liebert Series 610 1000 kVA UPS	
Power Requirements	Load Connections
Rated kVA : * 1000 Output V	Phase : * Single Three
	Voltage : * 480
Rectifier Details	Load Transient Limits
Rectifier Type : * 12 pulse 🗸	Max. % Voltage Dip : * 15
Harmonic Content (THDI%) : * 10	Max. % Frequency Dip : * 5
Project Level THDV% Limit : * 10	
Loading Factor	Ramp Options
Loading Factor (%) : * 100 🕕	Soft Ramp : Slow
Comments	

Spec Note Generator set manufacturer shall provide documentation from the manufacturer's sizing software demonstrating compliance with specified harmonic distortion limits.

Concept Check

Which of the following statements is false:

- a) The higher the Short Circuit Ratio, the lower the harmonics.
- b) Generator Sets and Utility handle harmonics very similarly.
- c) The lower the subtransient reactance (X"d), the lower the harmonics.
- d) An 18 pulse rectifier induces less THDI% than a 6 pulse rectifier.

Concept Check

Which of the following statements is false:

a) The higher the Short Circuit Ratio, the lower the harmonics

b) Generator Sets and Utility handle harmonics very similarly

- c) The lower the subtransient reactance (X"d), the lower the harmonics
- d) An 18 pulse rectifier induces less THDI% than a 6 pulse rectifier

Temperature Rise

	Insulation system:		Class H throughout					
	3 Ø Ratings	(0.8 power factor)			·	60 Hz (wind		
				<u>416</u> (12)	<u>440</u> (12)	<u>480</u> (12)	<u>600</u> (07)	
	163° C rise ratings	@ 27° C	kW	3680	3592	3920	3920	
			kVA	4600	4490	4900	4900	
	150° C rise ratings	@ 40° C	kW	3304	3496	3816	3816	
			kVA	4130	4370	4770	4770	
0	125° C rise ratings	@ 40° C	kW	3096	3272	3571	3571	
			kVA	3870	4090	4464	4464	
	105° C rise ratings	@ 40° C	kW	2892	3056	3558	3338	
			kVA	3615	3820	4172	4172	
	80° C rise ratings	@ 40° C	kW	2512	2640	2900	2900	
			kVA	3140	3300	3625	3625	

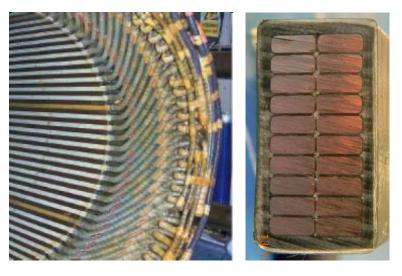
Voltage Class	< 10 kV	> 10 kV
Insulation Class	Н	F
Total Temperature	180 C	160 C
Nominal Temp Rise	125 C	105 C
Nominal Ambient Temp	40 C	40 C
Hot Spot Allowance	15 C	15 C

4464 kVA is maximum load for 180 °C insulation class

125 °C rise

- + 40 °C ambient
- + 15 °C hot spot variation
- = 180 °C insulation limit

Spec Note Specify alternator temperature rise based on insulation class and ambient conditions.


Alternator Winding Type

Random/Wire Wound

- Easier to cool
- Easier manufacturing process
- Usually better waveform quality
- Less copper and steel to reach short circuit and motor starting capabilities

Form/Bar Wound

- Better for MV and HV applications
- More difficult to manufacture
- Greater mechanical strength
- Greater dielectric strength

Spec Note Specify generator performance criteria, not manufacturing method.

Specification Example

Specification Requirement:

Alternator maximum subtransient reactance shall not be greater than 12%.

Should an oversized alternator be selected?

An oversized alternator may have...

- Better harmonic performance
- Greater leading VAR capability
- Lower subtransient reactance

An oversized alternator may also have...

- Higher fault current
- Slower start time
- and may be more expensive!

3 Ø Ratings	(0.8 power f	actor)			60 Hz (windi		
			<u>380</u> (13)	<u>416</u> (12)	<u>440</u> (12)	<u>480</u> (12)	
163° C rise ratings	@ 27° C	kW	3296	3152	3336	3640	
		kVA	4120	3940	4170	4550	
150° C rise ratings	@ 40° C	kW	3200	3072	3248	3544	
		kVA	4000	3840	4060	4430	
125° C rise ratings	@ 40° C	kW	3000	2872	3040	3314	
		kVA	3750	3590	3800	4142	
105° C rise ratings	@ 40° C	kW	2760	2680	2840	3097	
		kVA	3450	3350	3550	3871	
80° C rise ratings	@ 40° C	kW	2424	2332	2468	2691	
		kVA	3030	2915	3085	3364	
3 Ø Reactances	5		<u>380</u>	<u>416</u>	<u>440</u>	<u>480</u>	
			(13)	(12)	(12)	(12)	
(Based on full load at 1	25° C rise ratin	g)				\frown	
Synchronous			2.700	3.120	2.948	2.700	
Transient			0.193	0.220	0.208	0.101	
Subtransient			0.142	0.161	0.152	0.140	
Negative sequence			0.205	0.233	0.221	0.202	
Zero sequence			0.027	0.031	0.029	0.027	

Reactances at genset rating (3750 kVA) Synchronous = 2.4 pu Subtransient = .126 pu

Course Summary

Specifying Standby Generator Set Requirements for Data Centers

Identify safe alternator operating zones on an alternator reactive capability chart to ensure proper operating conditions on the generator

- Recognize the differences in generator load acceptance of active power, unity power factor and conventional lagging power factor loads and define specification requirements and operating sequences for each type
- Describe the impact of non-linear loads on harmonics
- Recognize the tradeoffs in properly specifying an alternator for data center applications

Recommendations

- Define the generator's leading VAR requirements and identify the generator's leading VAR capabilities. Specify
 alternator and operating sequences accordingly
- Consider UPS walk-in function rather than oversizing generator set for full load acceptance
- Specify transient requirements and acceptance test requirements that are representative of actual usage
- Use generator set sizing software to evaluate harmonic requirements

Additional Resources

Cummins White Papers

- Data Center Continuous (DCC) Ratings: A Comparison of DCC Ratings, ISO Definitions and Uptime Requirements (Nov 2019)
- Understanding ISO 8528-1 Generator Set Ratings (Nov 2019)
- Transient Performance of Generating Sets
- Specifying and Validating Motor Starting Capability

Cummins On-Demand Webinars

- Generator Set Ratings for Data Centers and Other Applications
- Common Failure Modes of Data Center Back Up Power Systems
- Using Fuel Cells to Address Energy Growth and Sustainability Challenges in Data Centers
- Advanced Generator Set Sizing Software: Transient Performance and Motor Load

BULLETIN SE00405 | TECHNICAL INFORMATION FROM CUMMIN DATA CENTER CONTINUOUS RATINGS

White Paper By David Matuseski

DATA CENTER CONTINUOUS (DCC) RATINGS: A COMPARISON OF DCC RATINGS, ISO DEFINITIONS AND UPTIME REQUIREMENTS

While Uptime Institute references the ISO8528-1 definitions for generator ratings in their publication Tier Standard: Topology, they do not require the use of these definitions for generators to meet the Tier III and Tier IV requirements, as described in the same publication. A more cost-effective and reliable generator rating that meets the Tier III and Tier IV requirements can be achieved when the generator manufacturer develops ratings specifically for data center applications.

DIESEL GENERATORS IN A TIER III OR TIER IV SYSTEM

In Tier III and Tier IV systems, Uptime Institute defines the diesel generators as the primary source of power and the utility as an economic alternative. This definition puts two important requirements on the diesel generators. First, they must be large enough to carry the entire data center load. Second, there can be no limit on the number of hours the diesel generators can run.

Figure 1 – Cummins QSK95-based generator sets offering ratings up to 3.5 MW based on ISO 8528-1.

Cummins

Q & A

Mark Taylor Technical Marketing Advisor Cummins Inc.

Earnest Glaser Senior Sales Application Engineer Cummins Inc.

Andrew Panning Engineering Technical Specialist Cummins Inc.

Chad Hale Technical Marketing Specialist Cummins Inc.

Following This Event...

First Email (ASAP)

1 Professional Development Hour (PDH) Certificate

Second Email (3-5 Business Days)

Video Recording

Copy of slide deck

Please engage with our exit survey!

Power Suite

Power Suite is where to find past PowerHours, Application Manuals, Sizing Tools, Data Sheets, and more!

Please contact us if you have any questions related to the PowerHour webinar (<u>PowerGenChannel@cummins.com</u>)

More From Cummins!

Cummins White Papers Click here to subscribe!

Brightest Bulbs Podcast

<u>Click here</u> to hear about the latest innovations in energy and power!

Cummins On-Demand Webinars

<u>Click here</u> for our full webinar library!

Click here to subscribe!

New Transfer Switch Product

Your Strongest Link to Reliable Power is Now Here! Learn more about the PowerCommand® X-Series Transfer Switch <u>here</u>!

Upcoming Live PowerHour: 09/27/2022 – Considerations for Generator Set Selection

