Cybersecurity of electric infrastructure and facility power

""

Is dependence to electric power the Achilles heel for businesses against the emerging cybersecurity threats? 

Cybersecurity threats to electric infrastructure continues to be a top-of-mind topic for many business executives. From healthcare and data center facilities to commercial and industrial buildings, businesses depend on electric power to continue their operations. Moreover, this dependence has been further amplified with the greater adoption of connectivity and increased interdependence of sub-systems and processes within a facility or business.

For those that oversee these facilities and power generation equipment, being future-ready requires increased cybersecurity. This is a challenge. At Cummins Inc., we make our partners’ challenges our challenges; make their goals, our goals. 

To help our partners in these industries be future-ready, we have asked three experts their take on the cybersecurity of electric infrastructure. These three perspectives aim to provide you with diverse viewpoints on how to strengthen your facilities’ cybersecurity.

How do cybersecurity gaps threaten our electric infrastructure?

Professor Alan Woodward, an internationally renowned computer security expert, offered his perspective on this question. Alan has particular expertise and current research interests in cyber security, covert communications, forensic computing and image processing. Alan is currently a Visiting Professor at Surrey Centre for Cyber Security, University of Surrey. You can follow Alan on Twitter at @ProfWoodward.

Here is Alan’s take on cybersecurity and infrastructure. 

There is more computing power in embedded systems today than is used on desktop computers, yet it goes largely untended. As soon as any system is made “intelligent” it becomes a target for hackers. Being embedded and untended, these systems go on for years without the upgrades that are necessary to keep them secure. Moreover, remote monitoring has moved from private networks to using the internet as the means for communications. Put these together and you have a target that is at high risk of remote attack.

Anyone looking after systems that have any embedded computing power needs to manage that computing infrastructure just as if it was in a data center hosting thousands of websites. It is even more difficult in infrastructure, as some vendors don’t always keep their software updated. We’ve seen examples of scanners in hospitals that could be upgraded to escape ransomware, yet the scanner manufacturer didn’t support the latest software. Anyone managing these devices needs to look at the horizon and think “what if.”

Choosing your equipment vendors has also taken a different dimension. It’s no longer just about who has what certification, meets which standard, or has the best hardware maintenance operation. Now, you need to explore how the vendors keep the software embedded in your equipment up to date and respond to any cybersecurity threats. 

Those managing infrastructure have the worst of both worlds. Hackers are beginning to see them as the soft spot for attacks, and not all equipment manufacturers see software security as part of their core business. 

It’s vital to remember that it’s not just the embedded software that can cause infrastructure issues. You need to be aware of the interdependency between software that directly controls infrastructure and other systems. For example, if a payments system is held to ransom, could your pipeline continue to operate even though the direct control systems were fully functional?

How to prevent cybersecurity threats that could result in power outages?

We have asked this question to Kenneth Holley. Kenneth founded Silent Quadrant – a Washington, D.C.-based digital protection agency and consulting practice – in 1993. Over the past 28 years, Silent Quadrant has delivered digital security, digital transformation, and risk management to the world's most influential government affairs firms, associations, and businesses. With a particular focus on infrastructure security and threat modeling, Kenneth has assisted many clients ensure brand and profile security. You can follow Kenneth on Twitter at @KennethHolley.

Let’s look at Kenneth’s perspective on preventing cybersecurity threats that could result in power outages.

As facilities technology continues its rapid emergence, facility managers and operators have become increasingly reliant on integrated technologies and iot. This convergence of IT and operational technology (OT) underscores the critical role of facility executives. This critical role is to ensure systems security, resiliency, and facility business continuity.  

Facilities need to understand very clearly that there is a new dynamic. Intelligent organizations leverage connected sensors, facilities automation systems, and actionable intelligence to optimize operations and business continuity. This new dynamic means that the threats are now everywhere. This establishes a new level of criticality securing those connected systems designed to prevent power outages.

I encourage all facilities, as part of a broader security assessment, to immediately focus on the following Center for Internet Security (CIS) controls:

  • Secure Configuration of Enterprise Assets and Software (CIS Control 4): Establish and maintain the secure configuration of enterprise assets (end-user devices, network devices, non-computing/iot devices, and servers) and software.
  • Account Management (CIS Control 5): Use processes and tools to assign and manage authorization to credentials for accounts. This includes user and administrator accounts, as well as service accounts.
  • Access Control (CIS Control 6): Use processes and tools to create, assign, manage, and revoke access credentials and privileges for user, administrator, and service accounts.
  • Security Awareness and Skills Training (CIS Control 14): Establish and maintain a security awareness program. The aim here is to influence behavior among the workforce to be security conscious and properly skilled to reduce cybersecurity risks.
The 18 Center for Internet Security Controls

Visibility of all assets within your facility is critical. You cannot hope to protect and provide resilience for what you cannot see and control. At the end of the day, integrated and interconnected technologies are designed to enhance overall business continuity. This requires a renewed operational approach to security. 

Cybersecurity in a product’s design and the complete life-cycle

Dwayne Smith brings us the third perspective on this topic. Dwayne has extensive experience in cybersecurity and the adoption of technologies that support a multitude of applications. Those applications also include power generation and electrical distribution. As an engineer in the fields of nuclear and cybersecurity, he has supported initiatives across multiple customers within the Department of Defense, intelligence community, telecommunication, and other commercial business segments. In his current role, Dwayne works within industries that support data centers, manufacturing, marine, rail, and automotive. Dwayne is currently the Global Cybersecurity Engineering Director at Cummins. 

Industries have and will continue to transform the way they design and build solutions. The introduction of new techniques to innovate and deliver products in a more efficient manner account for cybersecurity early in those processes.  

These new techniques rely on how we think about cybersecurity as a priority within the design and manufacturing processes that produce these new products. This requires cybersecurity to be more than a concept that is thought about as a discrete and separate discipline.
Cybersecurity is now something embedded in a product’s lifecycle. Having cybersecurity embedded in how you build products eliminates the need for bolt on protections or to surround the product with protective technologies. These add-ons can be costly to manage, may hamper the performance of a product, or require the early retirement of a product. 

Taking the proactive step to include cybersecurity early in these processes ensures that the product can be resilient over time. This approach can also increase the service time and life of a product so that it can adapt to evolving cyber threats. This reduces the risk impact and ultimately moves cybersecurity from a concept to a measurable quality metric.

The traditional ways of how systems are engineered, tested, and operated already consider the benefits of software and firmware that deliver the adoption of desired features. 

Now, how these systems are engineered, tested, and operated also need to consider the data they collect or generate. That data is key to improving and sustaining products for both the product owner and the product supplier. How to retrieve that data for use, whether through a remote connection across the internet or from within a larger enterprise network requires that cybersecurity be considered end to end during a products life cycle.

Sign up below for Energy IQ to receive energy focused insights in markets ranging from data centers and healthcare facilities, to schools and manufacturing facilities, and everything beyond. To learn more about power solutions Cummins offers, visit our webpage.

Aytek Yuksel - Cummins Inc

Aytek Yuksel

Aytek Yuksel is the Content Marketing Leader for Cummins Inc., with a focus on Power Systems markets. Aytek joined the Company in 2008. Since then, he has worked in several marketing roles and now brings you the learnings from our key markets ranging from industrial to residential markets. Aytek lives in Minneapolis, Minnesota with his wife and two kids.

How is the United States investing in clean energy?

GR hero

Our planet is facing a dire crisis: carbon dioxide concentrations in the atmosphere continue to soar above record highs. If gone unaddressed, the collective stress of climate change will produce an irreparable impact. Our health, energy, water, and food ecosystems are at risk. 

As it stands, there are many long-term effects of climate change. In North America, climate change is forecasted to cause decreasing snowpack in the western mountains. It will also lead to a 5–20% increase in yields of rain-fed agriculture and great intensity of heat waves. In fact, over the last five years, the United States has incurred roughly $120 billion a year in damages as a result of natural disasters caused by extreme weather and climate events.

Beyond natural catastrophes, climatic risks to the United States will have a cascading effect on the country’s interconnected ecosystems. Reduced labor and overall economic productivity, and altered crop yields, will disproportionately harm lower-income and marginalized populations. These groups lack the resources to prepare or cope with extreme weather and climate events.

The world is investing in clean energy innovation

Combating the intensifying climate crisis requires a strategic combination of research and development (R&D), innovation, technology — and bold attempts.

Around the globe, countries are investing in clean energy to contribute to a livable planet now and for generations to come. In 2022, the US passed the Inflation Reduction Act, which includes a historic $370 billion investment to address the climate crisis. The Inflation Reduction Act provides tax credits and incentives to power homes, businesses, and communities with clean energy by 2030. The Act will increase investments in the fastest-growing power generation technologies, solar and wind. It will also advance cost-saving clean energy projects and protect two million acres of national forests. These initiatives are in addition to substantial tax credits and rebates offered to families and businesses in the United States.
Consequently, a stronger clean energy economy will contribute to overall economic growth and competition. As a result, there will be millions of new well-paying jobs for Americans to make clean energy.

It is possible to start decarbonizing now

Governmental policy strategies and investments in decarbonization technologies are part of the solution to produce increasingly cheap, dependable, and clean energy.

Strong communities and vibrant economies depend on a healthier planet. As a global power technology leader, Cummins is in a unique position to power customer success by leading during this energy transition. We intent to do so by providing customers with the right technology at the right time, understanding of their needs and applications.

We think of this journey to carbon neutrality in two distinct and complementary ways. First, by innovating zero-emission solutions and introducing them in markets and applications where the infrastructure, development and deployment are ready. Secondly, by advancing internal combustion engines through efficiency improvement and by running them on cleaner alternative fuels for a well-to-wheels solution.

Through Destination Zero, we are advancing low- and no-carbon platforms. This includes diesel and natural gas engines, hybrid, and electric platforms, as well as powertrain components, controls, and related technologies.

Join Cummins in powering a better tomorrow

Cummins environmental sustainability strategy includes goals timed for 2030. Progress toward the reduction of carbon emissions from company plants and facilities — in addition to our products — is in full swing. For more than one hundred years, we have brought technological solutions to market. As a power solutions leader, we will continue to power a more prosperous world for today and tomorrow. Are you ready to consider investing in new power solutions?

Traci Kraus headshot

Traci Kraus

Traci Kraus is a Director of Government Relations where she leads US federal advocacy for Cummins. She focuses on energy, climate, hydrogen, transportation and budget legislative and regulatory issues. 

Prior to joining Cummins, Traci worked for former U.S. Senator Russ Feingold.  She has a Master’s in Public Administration from the George Washington University and B.A.s in Government and Politics and Communication from the University of Maryland in College Park. She is originally from Chicago, and now lives outside of Washington, D.C. with her husband, Aaron and two children Liam (8) and Sloane (5).

Twelve ways to prepare for winter power outages

home generator in the snow

When a freak winter storm struck Texas in February 2021, the state’s power grid couldn’t handle it. Nearly five million people suddenly found themselves without electricity in freezing temperatures, causing a humanitarian crisis. 

The worst power outage in Texas’ history was a wake-up call. Winter power outages can be serious even if you live in a typically warm climate. 

Here are some time tips in case your family ever finds itself without power in the middle of winter:

  1. Add insulation to your attic — In addition to helping keep the cold out and the heat in, the proper amount of insulation can help prevent ice dams from forming on the edges of your roof, which can lead to water damage inside your home.
  2. Stock up on non-perishable food and water — Stow enough food that does not need to be cooked and water for everyone in the family  Make sure you have a manual can opener, too.
  3. Don’t use a gas stove or oven for heat — During a power outage your home has less airflow. This increases the risk of carbon monoxide poisoning if you run the stove or oven continuously. Gas stoves are designed for intermittent, short-term use and don’t have all the safety features of a gas furnace.
  4. Use a wood-burning fireplace if you have one — Just make sure you have enough seasoned firewood on hand and your chimney regularly cleaned and inspected.
  5. Download our Power Outage Ultimate Checklist — It provides in-depth information about what to do before, during and after an outage. It even shows you what to do for children, pets and family members with medical needs. You can download it here.
  6. Dress in layers — Wear a polypropylene base layer, then add a warm shirt and a sweater or cardigan. Wear synthetic or wool insulated pants instead of jeans or khakis. Cotton fabric is not a good insulator. Make sure you have warm mittens, woolen socks and a knit cap also.
  7. Buy flashlights and extra batteries —Make sure you have enough for every family member. If the temperature gets too cold inside, alkaline batteries won’t perform very well. Either keep them close to your body (to keep them warm) until you need to use them or invest in some lithium-ion batteries, which perform better in the cold.
  8. Keep mobile phones charged and gas tanks full — Your phones and your vehicles are your lifelines to the outside world. If you have an EV, make sure it’s fully charged.
  9. Protect your pipes — As water freezes, it expands. This can burst the pipes in your home. Add insulation to your exposed pipes. During a power outage, you can also open each faucet to allow a slow drip. This water flow will help keep the water from freezing in the pipes.
  10. Winterproof your home — Seal doors and windows to reduce drafts so you keep as much heat indoors as possible.
  11. Invest in a whole-home standby generator — For the ultimate peace of mind, consider one of the Cummins QuietConnect™ home standby generators. In the event of a power outage, your generator will automatically switch on and keep your home powered. 
  12. Install carbon monoxide detectors with battery backups — Place them in central locations on every floor so if any carbon monoxide gets in the home, you are immediately alerted.

Power outages are always inconvenient. But winter power outages can be downright scary. To see the different ways that Cummins can help keep your family warm and cozy during a winter power outage, visit us at cummins.com/na/generators/home-standby/whole-house-and-portable or find a local dealer at cummins.com/na/generators/home-standby/find-a-dealer.

Cummins Office Building

Cummins Inc.

Cummins, a global power technology leader, is a corporation of complementary business segments that design, manufacture, distribute and service a broad portfolio of power solutions. The company’s products range from internal combustion, electric and hybrid integrated power solutions and components including filtration, aftertreatment, turbochargers, fuel systems, controls systems, air handling systems, automated transmissions, electric power generation systems, microgrid controls, batteries, electrolyzers and fuel cell products.

Cummins ICE technologies to power customer success on path to zero emissions

semi on highway through the forest

This is the first of a series of articles on powertrain technologies Cummins is looking to introduce on the path to zero emissions by 2050.


Internal combustion engine (ICE) technologies are an important transitory step for the trucking industry as Cummins pursues net-zero carbon by 2050 under its Destination Zero strategy, which is to go further, faster to reduce the greenhouse gas (GHG) and air quality impacts of its products. 

Cummins’ ICE technologies focus on advanced diesel, gas and hydrogen, which will provide clean, cost-effective power to customers in the years ahead and help Cummins achieve an interim goal of lowering emissions from newly sold products by 25% by 2030.

“Many Australian and New Zealand trucking businesses – owner-operators, small, medium and even large fleets – who are vital to both countries’ road transport efficiency into the future, will only remain in business with affordable technologies to reduce their carbon footprint,” says Mike Fowler, director and general manager of on-highway business for Cummins Asia Pacific.

He says getting to zero emissions in the heavy-duty trucking industry will not be a “light switch event” and that the pathway to the target will require some transition through lower carbon solutions while the economic, operational and infrastructure challenges of zero emission vehicles are solved.

Importantly, the industry needs multiple solutions to meet the needs of all on and off-highway customers with their variety of duty cycles and operating environments. The pace of transition will not only be driven by customer requirements but also infrastructure investment and regulatory advancements.

“There are still significant efficiency gains Cummins can achieve with diesel internal combustion technology to further reduce greenhouse gas (CO2) emissions and atmospheric pollutants,” Fowler points out.

“Heavy-duty trucking today requires the power density and operational range that only diesel internal combustion can provide,” he adds. “This is particularly relevant in Australia with its challenging operating environment.”

A new big bore Cummins diesel engine in the pipeline will further reduce carbon emissions with fuel savings of more than 10% compared with Cummins’ current X15 Euro 6 engine.

Cummins Inc. president and CEO, Jennifer Rumsey, emphasized recently that an important step in getting to net-zero was about making existing technologies more efficient.

“We can make a big difference by improving the efficiency of diesel engines in the next decade. Those products will be out there for many years beyond that. We shouldn’t just focus on zero only, we need a combination of advancing zero and improving engine-based products that we have today.”

Cummins recently announced the development of natural gas and hydrogen internal combustion engines – designated X15N and X15H – which were showcased at the Advanced Clean Transportation (ACT) Expo, North America’s largest advanced transportation technology and clean fleet event, where they attracted a lot of attention.

Debuting a clean hydrogen-burning engine is one thing. Having the fuel infrastructure in place to support it is another. The good news in Australia is that Queensland, New South Wales and Victorian state governments recently announcing collaboration on a renewable ‘green’ hydrogen refuelling network for heavy trucks on the nation’s most critical roads and highways, starting with the Hume Highway, Pacific Highway and Newell Highway.

NSW aims to have 10,000 heavy vehicles powered by green hydrogen by 2030.

Both the X15H and X15N are based on an entirely new 15-litre design which offers a weight saving of around 200 kg over the current X15 diesel engine. 

They also highlight Cummins’ new ‘fuel-agnostic’ engine platform – an industry first – which offers different versions of the same base engine. The bottom-end of the engines looks the same, while unique cylinder heads are designed to accommodate a different low or zero carbon fuel.  Each engine within the platform can run on one specific fuel using familiar internal combustion engine technology.

Hydrogen is an energy dense, carbon-free fuel and offers benefits in terms of range, payloads and fast refuelling times. The hydrogen engine itself is not completely CO2-free in that small amounts of oil in the crankcase still make their way to the combustion chamber where they’re burned, emitting a small amount of carbon through the tailpipe. NOX levels drop substantially in hydrogen combustion versus conventional diesel, by at least 75% from today’s most stringent standards.
The hydrogen engine offers performance comparable to a diesel and is virtually a drop-in replacement for a traditional engine, the major modification to a truck’s architecture being the addition of a hydrogen fuel system.

The natural gas X15N is scheduled for release in 2024 and will be offered with peak ratings of 500 hp and 1850 lb ft of torque. The engine can achieve carbon negativity when fuelled with renewable natural gas – or biogas – using methane collected from organic waste as the primary fuel source.

Premier US fleet Werner Enterprises, which is focused on reducing its carbon footprint, will begin validation and integration of the X15H and X15N in its trucks in the second half of 2022.
 

Redirecting to
cummins.com

The information you are looking for is on
cummins.com

We are launching that site for you now.

Thank you.