Examples on where microgrids are used

Cityscape

Microgrids have many different application cases. Check out the real-life examples on where microgrids are used.

Microgrids are small-scale electricity networks. They are power systems which both generate and distribute electricity. Some microgrids are connected to the main electricity grid; others are not connected by choice or because there is no main electricity grid to connect to. 

Modern wide-area electricity grids are vast interconnected systems consisting of millions of electricity consumers and thousands of electricity generators. In Canada and in the United States, for example, the Western Interconnection covers most of the territory west of the Great Plains. It includes about 136,000 miles of high voltage transmission lines, in addition to medium and low voltage distribution lines. A complex patchwork of dozens of utilities, system operators and other entities maintain, operate and regulate it.

Microgrids, in contrast, cover a local area, don’t normally include high voltage transmission lines, and connect far fewer consumers and providers. Typically, private microgrids are owned and operated by the same entity that also owns the load served by the microgrid. Public microgrids serving, for example, an island, are typically owned and operated by a local municipal utility.

Simple microgrids have existed for as long as public electricity service has been available. However, in recent years, the explosive rise in renewable electricity has led to more microgrids being deployed. These modern microgrids incorporate more sophisticated technology. They typically connect a variety of assets including solar arrays, wind turbines, gas or diesel generators, and battery energy storage.

Microgrids used in island grids 

Islands that are too small or too distant to warrant building an electric connection to the mainland are required to operate their own microgrids. Traditionally, island microgrids have relied on diesel generators to provide all or most of their electricity. Generators are perfect for island applications because of their flexible operation. Generators can start up quickly, and a power plant inclusive of multiple generators can effectively cover a very wide load range. Liquid fuels are also the traditional fuels of choice for island power plants because they are easy to transport and store. 

Microgrid components
Click the image to take a closer look at microgrid components

Many islands have seen their residents increasingly dissatisfied with this setup however. Older generators can impact the air quality locally, which can be particularly undesirable for islands that rely on tourism. For islands with few economic resources, the cost of shipping liquid fuel can also be a major burden.

Such islands are turning towards solar and wind generation as ways to reduce their dependence on fossil fuels. A smart microgrid integrating a mix of renewable resources, generators and battery energy storage systems can effectively make electricity more affordable and more reliable, while also reducing the environmental impact of the electricity production.

Modern control systems can be programmed with all the parameters of the various distributed energy resources to run the microgrid in order to maximize the use of renewables and minimize imported fuel use. An important benefit is extra resiliency for the grid, avoiding blackouts and brownouts across the network.  

An example would be Calvert Island in British Columbia, Canada, where Cummins Inc. was involved in a project to upgrade the island’s microgrid. The island needed more power but was reliant solely on diesel generation. The island upgraded to a microgrid with solar arrays, battery energy storage and new Cummins diesel generators. The upgrade resulted in fossil fuel consumption being reduced by 83%.

Microgrids used in remote locations

Industrial facilities and settlements located in remote locations with no access to utility service face the same difficulties as islands. These facilities have historically used diesel generators. Fuel needs to be transported, sometimes via truck over long distances in challenging terrains. For mines located in Northern Canada or in remote parts of Australia, for example, the cost of transporting the fuel can easily exceed the cost of the fuel itself. In some regions of the world, such as remote regions of Alaska and northern Canada, transportation of fuel must also take into consideration the changing seasons when road and water ways will allow for transportation vehicles and vessels.

Industrial operations, in addition, need robust systems to guarantee electricity supply. If a mine’s ventilation system comes to a halt because of a power failure, for example, conditions may quickly degrade for workers underground.

Such operations are keen to take advantage of locally available renewable resources to reduce costs and ensure safety. Reducing fuel costs by even a small percentage at a large-scale mining operation can rapidly result in substantial savings.

An example of a mining microgrid is the Agnew gold mine in Western Australia, where Cummins took part in the project to construct a power complex to supply the mine. The site decided on an off-grid 23 MWe power plant made up of 16 MWe gas, 4 MWe solar and 3 MWe diesel power generation. A further 2 MWe of gas-powered generation was added, followed by 18 MWe of wind generation and a 13 MWe energy storage battery and advanced control system. Over half of the 56 MWe capacity hybrid plant is from renewable resources.

Cummins also took part in a project to upgrade the power supply at Fisherman’s Landing marina off of Vancouver Island in British Columbia, Canada. During summer, the marina accommodates large yachts where the yachts are provided with electrical service. As a result, the marina’s electrical consumption would experience significant seasonal changes. The marina installed a microgrid incorporating solar power for the low season and diesel generation for the high season. Thanks to the new microgrid, yacht owners can now connect to the marina’s electrical service, and switch off their on-board engines and generators to enjoy the quiet and calm of Desolation Sound. 

Microgrids used for onsite generation 

Microgrids are not exclusive to remote areas. Any facility seeking to integrate multiple loads and multiple on-site generation resources should consider building a microgrid, whether a connection to the main utility service is available or not. 

Military bases often utilize microgrids on their premises for security reasons despite being connected to a utility grid. In Hawaii, for example, the U.S. Navy is in the process of building an extensive microgrid to cover Joint Base Pearl Harbor-Hickams. The Navy’s project includes several hundred megawatts of solar generation, energy storage, as well as an extensive electrical backbone connecting dozens of buildings and facilities. Outside of emergencies, the Navy’s generation assets will provide power to the local utility.

Other facilities may decide to build a microgrid to simply reduce electricity and energy costs. With intelligent controls, microgrid consumers can switch between grid service and self-generation depending on what is most economical. 

A network of microgrids comprised of various distributed energy resources attached to the main grid also adds resiliency to the whole electrical system, as the grid operator can arrange to utilize these resources as and when necessary. As extra generation is produced and consumed on site, this alleviates pressure on the main grid and translates into less need for investment for upgrades to the distribution network. 

However and wherever microgrids are used, the intelligent systems and technologies now available to integrate renewable resources into local electricity schemes mean that, in economic and societal terms, owners have the opportunity to go renewable while benefitting from cost-effective electricity.

Interested in more on microgrids? You might also like: 

Sign up below for Energy IQ to receive energy focused insights in markets ranging from data centers and healthcare facilities, to schools and manufacturing facilities, and everything beyond.

Aytek Yuksel - Cummins Inc

Aytek Yuksel

Aytek Yuksel is the Content Marketing Leader for Cummins Inc., with a focus on Power Systems markets. Aytek joined the Company in 2008. Since then, he has worked in several marketing roles and now brings you the learnings from our key markets ranging from industrial to residential markets. Aytek lives in Minneapolis, Minnesota with his wife and two kids.

Cummins Custompaks are being used for water management as Thailand struggles with its water crisis

CustomPak on site

Water crisis

Sixty Cummins Inc. CustomPaks are in service in Thailand as part of a critical water management plan aimed at easing the country’s water crisis – a crisis that has caused enormous economic and social damage and stirred conflict among communities.

Over the past several decades, Thailand has continually faced water problems caused by severe drought. Water reserves in dams and reservoirs are insufficient while water resources are often contaminated with toxins caused by urban communities and the industrial and agricultural sectors.

Severe flooding is a threat, too, at a time when the realities of climate change are hanging over the country.

As a result, the allocation of precious water resources, which must be shared among various stakeholders including new and existing industry, large and small agriculture, and cities and villages has become a flashpoint.

Kittithanapat Engineering Co. (KTP), has been involved in the water management system since 1996, working closely with authorities such as the Royal Irrigation Department, Department of Water Resources, Bangkok Metropolitan Authority and others.

CustomPaks on site

600 hp CustomPaks

To help KTP meet its often urgent requirements, Cummins DKSH (Thailand) has recently supplied 60 Australian-built CustomPaks – 45 powered by Cummins’ X15 engine rated at 600 hp, and 15 powered by the QSL9 rated at 325 hp. These fully self-contained powerpacks are emissions certified to Tier 3.

The CustomPaks are coupled to hydraulically-driven, large-volume submersible water pumps sourced by KTP from US company Moving Water Industries (MWI); KTP is the exclusive distributor in Thailand for these MWI Hydroflo pumps.

Prior to Cummins’ involvement, KTP was using another diesel engine brand but service support wasn’t up to the standard required.

Long-serving KTP engineer Kittisak Thanasoot says Cummins DKSH’s reputation for technical and aftersales support along with the reliability of the Cummins product were a key reason behind KTP’s decision to specify the CustomPaks for the Royal Irrigation Department.

The ability of Cummins DKSH to respond to short delivery times was also important.

“Supplying large quantities of high horsepower diesel engines for emergency situations such as flash flooding can be a challenge for KTP,” says Kittisak Thanasoot.

“Responding to the needs of the government agencies to manage such problems in a timely manner and with least impact on communities, KTP has found the answer in our partnership with Cummins DKSH.”

Power, pride and passion

Parked semi truck

The switch back to Cummins power has been beneficial for iconic New Zealand company Uhlenberg Haulage. It's all about whole-of-life costs.

Uhlenberg Haulage is closing in on 60 years in business, having been founded in 1966 by Mike and Carol Uhlenberg.

Based in Eltham, Taranaki, in New Zealand’s North Island, the operation is today owned and operated by their sons Chris, Daryl and Tony Uhlenberg.

Describing the Uhlenbergs as “old school family truckies”, Daryl talks about the company’s time-honored journey with a definite tone of pride, especially the work of his parents in laying the foundations for what is today an iconic fleet in its own right.

Cummins Inc. made its debut in the Uhlenberg fleet in 1971 with an NH250 powering a second-hand Kenworth K923 used in logging. A second Kenworth, a new W924 with a Cummins NTC335, followed soon after hauling an LPG tanker.

The Uhlenberg operation today comprises 40 prime movers and a variety of trailing gear to cater for the myriad of a jobs the fleet is involved in.

A number of Peterbilts feature in the fleet although Kenworth is now the brand of choice with six new units to be delivered over the next 12 months to cater for business growth.

Cummins’ X15 Euro 5 engine rated at 550 or 600 hp is the preferred power specification, with 18 red engines currently in the fleet.

Uhlenberg family in front of truck

Whole-of-life support

“The switch to Cummins has been a very good experience for us. We have nothing but praise for the Cummins organization,” says Daryl.

“The whole-of-life picture is the key thing for us and we’ve got that nailed with the support we get from Cummins – parts availability, scheduled maintenance, life expectancy and in-frame rebuilds.

“So the red engines turn up, we run them to life, which is 900,000 to 1.2 million kilometers, and then Cummins does an in-frame overhaul in a timely manner. If there’s an issue, parts and support are close by.

“The support we get from Cummins Palmerston North is fantastic, second to none.”

Daryl recently looked under a Kenworth that was in the workshop for a service and was surprised to see no oil leaking from the one-million-kilometer X15. “I remember when I was a fitter we had to wear a raincoat when working under a truck,” he jokes.

Fuel agnostic

Acknowledging that the push to decarbonize is now “very real”, Daryl likes the idea of Cummins’ fuel agnostic concept where one base internal combustion engine, optimized to run on diesel, can also be customized to run on ultra-low and zero-carbon fuels like renewable natural gas and hydrogen.

“My father was a pioneer of linehaul trucking in New Zealand and he always embraced new technology. He was never scared of it,” he says.

“I tend to be a little more cautious but I can see where a 500 hp natural gas or hydrogen engine would work for us in short haul applications,” he admits. “We’re certainly willing to look closely at these alternative fuel technologies when suitable infrastructure is in place.”

Redirecting to
cummins.com

The information you are looking for is on
cummins.com

We are launching that site for you now.

Thank you.