Essential vehicle software and power electronics in battery and fuel cell electric vehicles

Graphic showing technical components of a semi

Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCVs) are vital to the transportation industry's move toward more sustainable operations. Both are low emission vehicles that run on electric power. Battery Electric Vehicles operate using energy stored in batteries, while Fuel Cell Electric Vehicles are powered by a fuel cell that creates electricity using hydrogen as a fuel, with water and heat as the only byproducts. Wider adoption of these vehicles and their low-emissions technology represent a significant path to decarbonizing commercial transportation.

Cutting-edge software and electronics play a crucial role in various aspects of operations, from managing power in the powertrain (comprising the electric motor, battery, and fuel cell) to controlling electronic components throughout the vehicle and human interface systems like throttle response and range estimates. This article gives an overview of how essential software, and electronics components work in BEV (Battery Electric Vehicle) and FCEV (Fuel Cell Electric Vehicles) technologies.

What Are the Software and Electronics Components in Battery Electric Vehicles (BEVs) And Fuel Cell Electric Vehicles (FCEVs)?

Powertrain:

BEVs and FCEVs share common powertrain components such as fuel cells, battery packs, inverters, and controls, but with some differences: in BEVs the internal combustion engine is replaced with batteries. FCEVs on the other hand, combine fuel cells with batteries. Vehicle software is important in both technologies and plays a role in managing power distribution and heat regulation. BEVs need advanced software to maintain battery performance and safety, managing temperature, charging, and discharging. While electronic components ensure precise power delivery for efficient performance. FCEVs too use similar software to optimize power distribution between the battery and the fuel cell. The software also helps in monitoring fuel consumption.

Chassis:

The chassis is made up of frame, wheels, brakes, and suspension. It is important for keeping the vehicle stable and easy to control. Electronic systems like Electronic Stability Control (ESC) help make it safer by applying brakes on certain wheels, which helps keep the vehicle steady and maintain direction when you need to make quick turns. Additionally, there are software-operated air suspension systems that change the height of the vehicle depending on speed and condition of the road. This helps to enhance aerodynamics and make it more comfortable to drive long distances.

Body:

The body includes the vehicle's structural and interior components. The body utilizes power electronics in the vehicle for features like automated door locks and advanced safety systems. Vehicle software and electronics use sensors and electronic control units (ECUs) to manage everything from window operations to driver-assistance systems, increasing both convenience and safety.

Electronics/Infotainment:

Electronics and software in vehicles can not only help control climate, lighting, and multimedia systems, but can also provide real-time vehicle data. Electronics also feed critical data to the onboard computers, ensuring systems like automatic headlight adjustment and rain-sensing wipers operate without a hitch.

Autonomous Driving or Advanced Driver Assistance Systems (ADAS):

The Autonomous Driving or Advanced Driver Assistance Systems (ADAS) includes sensors, radars and controllers that provide critical driver assist and automation features. These features include controlling signals going to the steering, braking and powertrain controllers, using real time and high-powered control units running advanced software.

Connected Services:

Connected services are where vehicle software plays a significant role by extending the vehicle's functionality. BEVs often feature an app that allows users to remotely check the charge level, start the vehicle, or even pre-condition the cabin temperature. Navigation systems also use connectivity to provide live traffic updates, ensuring efficient route management.

By embedding intelligent software and electronics throughout the vehicle, BEVs and FCEVs can enhance user experience, and help meet environmental goals. As these technologies evolve, they will further lead the charge towards a cleaner, and more reliable transportation future.

Role Of Software and Electronics in Battery Electric Vehicles (BEVs) And Fuel Cell Electric Vehicles (FCEVs)

Battery Management:

Software's role in battery management is vital in maintaining the health and efficiency of BEVs and FCEVs. Vehicles can utilize advanced battery management systems that monitor each cell's temperature and voltage, balancing the charge across the battery pack to maximize life and range. Some vehicles’ systems can even learn from the driver's habits to heat or cool the battery to the optimal temperature for driving and charging.

Powertrain Control:

Electronics have transformed powertrain control, enhancing the driving experience by ensuring smooth power delivery. ECUs can precisely manage the electric motor's output, delivering instant torque while maintaining energy efficiency.

Telematics:

Telematics software is crucial for real-time vehicle monitoring and navigation. BEVs and FCEVs can offer remote battery status checks, route planning that considers charging station locations, and pre-heating or cooling the vehicle cabin while still connected to the grid, helping vehicles go as far as possible off one charge.

Artificial Intelligence (AI):

AI is increasingly being integrated into vehicle software capabilities. Manufacturers are employing AI to calculate the range of vehicles more accurately by considering factors like weather conditions, cargo weight, and driving habits. AI also helps predict maintenance needs by analyzing vehicle data and usage patterns, alerting drivers to potential issues before they arise, and proactively scheduling servicing.

Considerations For Manufacturers with Regards to Vehicle Software and Power Electronics

With evolving technology in battery electric and fuel cell electric vehicles, several considerations emerge:

  1. Complexity: The shift to advanced software and electronics in vehicles certainly reduces mechanical complexity but increases software complexity. This includes complexity in battery management in BEVs and managing high voltage power distribution throughout the vehicle.
  2. Managing Power and Updates: Manufacturers need to make sure that vehicle software and electronics can deliver power efficiently when needed and that software updates can be done easily, even remotely. Investing in advanced power management systems and establishing robust infrastructure for delivering timely software updates will be crucial to ensure optimal performance.
  3. Security: Keeping the vehicle’s systems safe from hackers and ensuring they work reliably, especially in FCEVs with high-voltage systems, is important.
  4. Supply Chain Resiliency:  The reliability of software and electronic subsystems is paramount. Manufacturers must ensure these components meet stringent standards and safety requirements.
  5. Lifecycle Support: It is essential for manufacturers to maintain software support throughout the vehicle's lifecycle, with a focus on simplicity and compatibility for easy support from numerous suppliers.

The integration of advanced software and electronics in BEVs and FCEVs is not just a trend but a critical evolution in commercial transportation technology. This development optimizes performance, improves safety, and helps make the transportation industries more sustainable. It also brings new challenges in terms of complexity, security, and supply chain management. As the industry navigates these challenges, however, the potential for innovation and growth in this sector is exciting, as it paves the way for a cleaner, more efficient future in transportation.

Cummins Inc. is at the forefront of innovative transportation and heavy-duty operations and Accelera™ by Cummins – the zero-emissions business segment of Cummins – is at the forefront of supplying and integrating zero-emissions technologies to decarbonize the world’s hardest working industries. For more information about BEV and FCEVs, visit accelerzero.com

Cummins Components Business Unit

Components Business Unit

Cummins Custompaks are being used for water management as Thailand struggles with its water crisis

CustomPak on site

Water crisis

Sixty Cummins Inc. CustomPaks are in service in Thailand as part of a critical water management plan aimed at easing the country’s water crisis – a crisis that has caused enormous economic and social damage and stirred conflict among communities.

Over the past several decades, Thailand has continually faced water problems caused by severe drought. Water reserves in dams and reservoirs are insufficient while water resources are often contaminated with toxins caused by urban communities and the industrial and agricultural sectors.

Severe flooding is a threat, too, at a time when the realities of climate change are hanging over the country.

As a result, the allocation of precious water resources, which must be shared among various stakeholders including new and existing industry, large and small agriculture, and cities and villages has become a flashpoint.

Kittithanapat Engineering Co. (KTP), has been involved in the water management system since 1996, working closely with authorities such as the Royal Irrigation Department, Department of Water Resources, Bangkok Metropolitan Authority and others.

CustomPaks on site

600 hp CustomPaks

To help KTP meet its often urgent requirements, Cummins DKSH (Thailand) has recently supplied 60 Australian-built CustomPaks – 45 powered by Cummins’ X15 engine rated at 600 hp, and 15 powered by the QSL9 rated at 325 hp. These fully self-contained powerpacks are emissions certified to Tier 3.

The CustomPaks are coupled to hydraulically-driven, large-volume submersible water pumps sourced by KTP from US company Moving Water Industries (MWI); KTP is the exclusive distributor in Thailand for these MWI Hydroflo pumps.

Prior to Cummins’ involvement, KTP was using another diesel engine brand but service support wasn’t up to the standard required.

Long-serving KTP engineer Kittisak Thanasoot says Cummins DKSH’s reputation for technical and aftersales support along with the reliability of the Cummins product were a key reason behind KTP’s decision to specify the CustomPaks for the Royal Irrigation Department.

The ability of Cummins DKSH to respond to short delivery times was also important.

“Supplying large quantities of high horsepower diesel engines for emergency situations such as flash flooding can be a challenge for KTP,” says Kittisak Thanasoot.

“Responding to the needs of the government agencies to manage such problems in a timely manner and with least impact on communities, KTP has found the answer in our partnership with Cummins DKSH.”

Power, pride and passion

Parked semi truck

The switch back to Cummins power has been beneficial for iconic New Zealand company Uhlenberg Haulage. It's all about whole-of-life costs.

Uhlenberg Haulage is closing in on 60 years in business, having been founded in 1966 by Mike and Carol Uhlenberg.

Based in Eltham, Taranaki, in New Zealand’s North Island, the operation is today owned and operated by their sons Chris, Daryl and Tony Uhlenberg.

Describing the Uhlenbergs as “old school family truckies”, Daryl talks about the company’s time-honored journey with a definite tone of pride, especially the work of his parents in laying the foundations for what is today an iconic fleet in its own right.

Cummins Inc. made its debut in the Uhlenberg fleet in 1971 with an NH250 powering a second-hand Kenworth K923 used in logging. A second Kenworth, a new W924 with a Cummins NTC335, followed soon after hauling an LPG tanker.

The Uhlenberg operation today comprises 40 prime movers and a variety of trailing gear to cater for the myriad of a jobs the fleet is involved in.

A number of Peterbilts feature in the fleet although Kenworth is now the brand of choice with six new units to be delivered over the next 12 months to cater for business growth.

Cummins’ X15 Euro 5 engine rated at 550 or 600 hp is the preferred power specification, with 18 red engines currently in the fleet.

Uhlenberg family in front of truck

Whole-of-life support

“The switch to Cummins has been a very good experience for us. We have nothing but praise for the Cummins organization,” says Daryl.

“The whole-of-life picture is the key thing for us and we’ve got that nailed with the support we get from Cummins – parts availability, scheduled maintenance, life expectancy and in-frame rebuilds.

“So the red engines turn up, we run them to life, which is 900,000 to 1.2 million kilometers, and then Cummins does an in-frame overhaul in a timely manner. If there’s an issue, parts and support are close by.

“The support we get from Cummins Palmerston North is fantastic, second to none.”

Daryl recently looked under a Kenworth that was in the workshop for a service and was surprised to see no oil leaking from the one-million-kilometer X15. “I remember when I was a fitter we had to wear a raincoat when working under a truck,” he jokes.

Fuel agnostic

Acknowledging that the push to decarbonize is now “very real”, Daryl likes the idea of Cummins’ fuel agnostic concept where one base internal combustion engine, optimized to run on diesel, can also be customized to run on ultra-low and zero-carbon fuels like renewable natural gas and hydrogen.

“My father was a pioneer of linehaul trucking in New Zealand and he always embraced new technology. He was never scared of it,” he says.

“I tend to be a little more cautious but I can see where a 500 hp natural gas or hydrogen engine would work for us in short haul applications,” he admits. “We’re certainly willing to look closely at these alternative fuel technologies when suitable infrastructure is in place.”

Redirecting to
cummins.com

The information you are looking for is on
cummins.com

We are launching that site for you now.

Thank you.