Benefits of alternative fuels and fuel-flexibility

A pair of cupped hands holds a mound of soil, out of which grows a small plant. An outline of a light bulb is drawn around the plant.

Internal combustion engines using traditional and alternative fuels are an integral part of life in all parts of the world. They are almost universally used in motor vehicles of all kinds, in power generation, and more. Traditionally, internal combustion engines run on liquid fuels. These fuels are distilled from petroleum. Think gasoline, diesel, kerosene or heavy fuel oil. 

What are alternative fuels?

Liquid fossil fuels are convenient and affordable, but they are not the only fuels that engines can burn. In fact, alternative fuels have been available for as long as internal combustion engines have existed. For example, vehicles running on a fuel known as wood gas were widely used during World War II. This allowed to save fuel needed for the war effort. Wood gas was generated by the incomplete combustion of wood chips. The process would take place in a sort of large kettle. The kettle could be placed on a trailer behind a vehicle, and from there piped to the vehicle’s engine. 

Today, few vehicles run on wood gas, but many other alternative fuels are available, and several more are being developed. Some, such as compressed natural gas (CNG) and liquid petroleum gas (LPG—a mix of propane and butane), are derived from fossil fuels. Others, such as renewable diesel, biodiesel, ethanol and biogas are obtained from energy crops or from organic waste. You can check out what are the low carbon fuels to learn more.  

Advances in chemical engineering and other disciplines have also made it possible to synthesize methane, hydrogen, diesel and more from non-fossil feedstock such as carbon dioxide (CO2) and water using renewable electricity. These synthetic fuels are sometimes known as e-fuels. You can check out what are power-to-x and e-fuels to learn more.

Renewable diesel can be used as drop-in replacements. For most engines, no modification is required. Biodiesels must be blended with fossil diesel to be used in standard compression ignition (CI) engines. Ethanol—basically, alcohol—can also be used in traditional SI (spark ignition) vehicles when it is blended with gasoline. Ethanol blending is extremely common. More than 98% of all gasoline sold in the United States contain a significant proportion of ethanol. 

For example, The Cummins Inc. Ethos spark ignited engine can run E85 (85% ethanol) without any modification. Meanwhile, engines capable of running flex fuel can use a blend of gasoline and ethanol from 51% to 83% (E85). Vehicles with this capability, known as fuel-flex vehicles, are not rare—according to the U.S. Department of Energy, there are more than 21 million fuel-flex vehicles driving on US roads. 

What is fuel flexibility?

Fuel flexibility is also an option for equipment owners who wish to use CNG or LPG as an alternative to gasoline. Either can be achieved with the addition of a separate fuel system and the addition of a new set of fuel injectors in the engine. Owners of dual-fuel vehicles can thus run on CNG, and, if no CNG fueling station is nearby when the gaseous fuel runs out, continue driving on gasoline. 

Alternative fuels are not just for road vehicles. Agricultural machinery, mining equipment, ships, locomotives, and other vehicles can all potentially benefit from using alternative fuels. Alternative fuels are also an option for stationary internal combustion engines. Stationary engines are commonly used in industrial applications such as oil and gas extraction or power generation. Power plant owners can more easily meet their operational and financial objectives when they have the option to use either traditional diesel, biodiesel or natural gas in their power plant. Power plants based on reciprocating engine power generators, for example, can start their engines on natural gas. Once the engines are running, they can be switched to biodiesel, allowing net CO2-free operation.

Businesses operating fleets of vehicles are constantly making tradeoffs between multiple objectives such as reducing capital costs, reducing maintenance costs, reducing fuel costs, and reducing emissions, while taking into consideration range and refueling constraints, among others. Adopting the use of an alternative fuel can help further one or more of those objectives. 

Environmental benefits of alternative fuels

Using an alternative fuel can be a good way to reduce carbon emissions. Burning fossil fuels releases carbon into the atmosphere that was previously stored underground. 

Biofuels, in contrast, release the carbon which was taken from the atmosphere by the crops that they are made from. This is why biofuels are thought of as net-CO2 free fuels. Similarly, renewable natural gas fuel produced from landfill, or sewer gas can be considered as a fuel with negative carbon intensity.

For businesses who wish to reduce their carbon footprint, alternative fuels present a variety of options. Switching to CNG or LPG can result in significant CO2 reductions, despite their fossil nature. Using a fuel with a greater ethanol or biodiesel content can also be effective. For businesses seeking further reductions in CO2 emissions, full conversions to biodiesel, hydrotreated vegetable oil (HVO), ethanol, renewable natural gas, or even hydrogen, or an e-fuel may also be an option. 

Besides CO2, internal combustion engines emit other gases in their exhaust. Most businesses should be concerned by the non-carbon emissions of their vehicle fleets. Clean-burning alternative fuels can help in that regard. In some cases, for example, converting a diesel truck to run on CNG can be more cost effective in the long run than investing in diesel exhaust emissions control equipment. 

In certain industries, additionally, non-carbon emissions pose a specific set of problems. These problems can lead to transformative solutions designed around an alternative fuel. Mines, for example, require a powerful ventilation system in order to maintain a safe and breathable environment. With heavy machinery operating underground, this is no easy task. Operating that ventilation system can be very costly and consume a lot of energy. These considerations have led several mining companies to explore options to fuel this machinery with hydrogen. Using hydrogen as a fuel would result in no emissions at all, and thus far smaller ventilation needs.

Economical benefits of alternative fuels

Traditional fossil fuels such as gasoline and diesel are generally convenient and affordable, but there are situations where alternative fuels are cheaper. Natural gas, specifically, has been consistently cheaper than gasoline and diesel when measured on a gasoline gallon equivalent basis. Operators of city buses, dumpster trucks and other commercial vehicles have saved millions of dollars by converting their fleets to run on CNG. 

Biogas can be used to generate electricity and heat for the water treatment process

In addition to being low, the price of natural gas is also stable over time. Natural gas prices tend to avoid the cyclical price fluctuations that petroleum-based fuels such as gasoline experience. As a result, owners of compressed natural gas vehicles enjoy operating costs that are both lower and more predictable.

Maintenance and other advantages of alternative fuels

Alternative fuels present a variety of other advantages. Here are some additional benefits:

  • Shelf life: Unlike gasoline and diesel, natural gas and propane have an unlimited shelf life, as do hydrogen and ammonia-based e-fuels. This is also true of several newer biodiesel and synthetic diesel formulations, which can last up to 10 years. 
  • Environmental compatibility: Biodiesel and renewable diesel are also biodegradable, non-toxic and produce less fumes. Likewise, LPG and natural gas are not likely to result in any soil or water contamination if spilled, since they would simply vaporize.
  • Reduced maintenance needs: Natural gas and propane tend to burn cleaner than liquid fuels. A lesser amount of soot thus makes its way into the engine’s oil. Some operators take advantage of this by extending oil change intervals. When a large fleet of vehicles are involved, this can easily result in a savings of tens of thousands of dollars or more.
  • Performance: Biodiesel and ethanol blends also have higher cetane and octane ratings than unblended diesel or gasoline, providing improved performance and acceleration. This is one of the reasons why; in the United States, NASCAR advertises its use of a blend of ethanol and gasoline containing 15% of ethanol—significantly more than the average fuel available at the pump.

Alternative fuels are far more common than many people realize. Several types of alternative fuels with a proven track record are available and, when deployed judiciously, can help businesses meet their environmental and cost reduction objectives.

Benefits of alternative fuels specific to your business

Your business has distinct characteristics and needs. As a result, you might find some of these alternative fuels more valuable than others. There are also other factors such as fuel availability, use case, and local regulations that you need to consider. 

These additional factors often are more localized. You can benefit from working with a partner knowledgeable in these local aspects and understand your business more intimately. We recommend you reach out to a local partner to find the best fit solution for your business and needs

Alternative fuels’ compatibility with different engines

Whether you are in marine, mining, rail, power generation or another sector, you may be wondering if your equipment is compatible with different alternative fuels. Please work with your Cummins partner to find the most up to date information about your engines and alternative fuels available for your needs.
 

Aytek Yuksel - Cummins Inc

Aytek Yuksel

Aytek Yuksel is the Content Marketing Leader for Cummins Inc., with a focus on Power Systems markets. Aytek joined the Company in 2008. Since then, he has worked in several marketing roles and now brings you the learnings from our key markets ranging from industrial to residential markets. Aytek lives in Minneapolis, Minnesota with his wife and two kids.

How is the United States investing in clean energy?

GR hero

Our planet is facing a dire crisis: carbon dioxide concentrations in the atmosphere continue to soar above record highs. If gone unaddressed, the collective stress of climate change will produce an irreparable impact. Our health, energy, water, and food ecosystems are at risk. 

As it stands, there are many long-term effects of climate change. In North America, climate change is forecasted to cause decreasing snowpack in the western mountains. It will also lead to a 5–20% increase in yields of rain-fed agriculture and great intensity of heat waves. In fact, over the last five years, the United States has incurred roughly $120 billion a year in damages as a result of natural disasters caused by extreme weather and climate events.

Beyond natural catastrophes, climatic risks to the United States will have a cascading effect on the country’s interconnected ecosystems. Reduced labor and overall economic productivity, and altered crop yields, will disproportionately harm lower-income and marginalized populations. These groups lack the resources to prepare or cope with extreme weather and climate events.

The world is investing in clean energy innovation

Combating the intensifying climate crisis requires a strategic combination of research and development (R&D), innovation, technology — and bold attempts.

Around the globe, countries are investing in clean energy to contribute to a livable planet now and for generations to come. In 2022, the US passed the Inflation Reduction Act, which includes a historic $370 billion investment to address the climate crisis. The Inflation Reduction Act provides tax credits and incentives to power homes, businesses, and communities with clean energy by 2030. The Act will increase investments in the fastest-growing power generation technologies, solar and wind. It will also advance cost-saving clean energy projects and protect two million acres of national forests. These initiatives are in addition to substantial tax credits and rebates offered to families and businesses in the United States.
Consequently, a stronger clean energy economy will contribute to overall economic growth and competition. As a result, there will be millions of new well-paying jobs for Americans to make clean energy.

It is possible to start decarbonizing now

Governmental policy strategies and investments in decarbonization technologies are part of the solution to produce increasingly cheap, dependable, and clean energy.

Strong communities and vibrant economies depend on a healthier planet. As a global power technology leader, Cummins is in a unique position to power customer success by leading during this energy transition. We intent to do so by providing customers with the right technology at the right time, understanding of their needs and applications.

We think of this journey to carbon neutrality in two distinct and complementary ways. First, by innovating zero-emission solutions and introducing them in markets and applications where the infrastructure, development and deployment are ready. Secondly, by advancing internal combustion engines through efficiency improvement and by running them on cleaner alternative fuels for a well-to-wheels solution.

Through Destination Zero, we are advancing low- and no-carbon platforms. This includes diesel and natural gas engines, hybrid, and electric platforms, as well as powertrain components, controls, and related technologies.

Join Cummins in powering a better tomorrow

Cummins environmental sustainability strategy includes goals timed for 2030. Progress toward the reduction of carbon emissions from company plants and facilities — in addition to our products — is in full swing. For more than one hundred years, we have brought technological solutions to market. As a power solutions leader, we will continue to power a more prosperous world for today and tomorrow. Are you ready to consider investing in new power solutions?

Traci Kraus headshot

Traci Kraus

Traci Kraus is a Director of Government Relations where she leads US federal advocacy for Cummins. She focuses on energy, climate, hydrogen, transportation and budget legislative and regulatory issues. 

Prior to joining Cummins, Traci worked for former U.S. Senator Russ Feingold.  She has a Master’s in Public Administration from the George Washington University and B.A.s in Government and Politics and Communication from the University of Maryland in College Park. She is originally from Chicago, and now lives outside of Washington, D.C. with her husband, Aaron and two children Liam (8) and Sloane (5).

Twelve ways to prepare for winter power outages

home generator in the snow

When a freak winter storm struck Texas in February 2021, the state’s power grid couldn’t handle it. Nearly five million people suddenly found themselves without electricity in freezing temperatures, causing a humanitarian crisis. 

The worst power outage in Texas’ history was a wake-up call. Winter power outages can be serious even if you live in a typically warm climate. 

Here are some time tips in case your family ever finds itself without power in the middle of winter:

  1. Add insulation to your attic — In addition to helping keep the cold out and the heat in, the proper amount of insulation can help prevent ice dams from forming on the edges of your roof, which can lead to water damage inside your home.
  2. Stock up on non-perishable food and water — Stow enough food that does not need to be cooked and water for everyone in the family  Make sure you have a manual can opener, too.
  3. Don’t use a gas stove or oven for heat — During a power outage your home has less airflow. This increases the risk of carbon monoxide poisoning if you run the stove or oven continuously. Gas stoves are designed for intermittent, short-term use and don’t have all the safety features of a gas furnace.
  4. Use a wood-burning fireplace if you have one — Just make sure you have enough seasoned firewood on hand and your chimney regularly cleaned and inspected.
  5. Download our Power Outage Ultimate Checklist — It provides in-depth information about what to do before, during and after an outage. It even shows you what to do for children, pets and family members with medical needs. You can download it here.
  6. Dress in layers — Wear a polypropylene base layer, then add a warm shirt and a sweater or cardigan. Wear synthetic or wool insulated pants instead of jeans or khakis. Cotton fabric is not a good insulator. Make sure you have warm mittens, woolen socks and a knit cap also.
  7. Buy flashlights and extra batteries —Make sure you have enough for every family member. If the temperature gets too cold inside, alkaline batteries won’t perform very well. Either keep them close to your body (to keep them warm) until you need to use them or invest in some lithium-ion batteries, which perform better in the cold.
  8. Keep mobile phones charged and gas tanks full — Your phones and your vehicles are your lifelines to the outside world. If you have an EV, make sure it’s fully charged.
  9. Protect your pipes — As water freezes, it expands. This can burst the pipes in your home. Add insulation to your exposed pipes. During a power outage, you can also open each faucet to allow a slow drip. This water flow will help keep the water from freezing in the pipes.
  10. Winterproof your home — Seal doors and windows to reduce drafts so you keep as much heat indoors as possible.
  11. Invest in a whole-home standby generator — For the ultimate peace of mind, consider one of the Cummins QuietConnect™ home standby generators. In the event of a power outage, your generator will automatically switch on and keep your home powered. 
  12. Install carbon monoxide detectors with battery backups — Place them in central locations on every floor so if any carbon monoxide gets in the home, you are immediately alerted.

Power outages are always inconvenient. But winter power outages can be downright scary. To see the different ways that Cummins can help keep your family warm and cozy during a winter power outage, visit us at cummins.com/na/generators/home-standby/whole-house-and-portable or find a local dealer at cummins.com/na/generators/home-standby/find-a-dealer.

Cummins Office Building

Cummins Inc.

Cummins, a global power technology leader, is a corporation of complementary business segments that design, manufacture, distribute and service a broad portfolio of power solutions. The company’s products range from internal combustion, electric and hybrid integrated power solutions and components including filtration, aftertreatment, turbochargers, fuel systems, controls systems, air handling systems, automated transmissions, electric power generation systems, microgrid controls, batteries, electrolyzers and fuel cell products.

Cummins ICE technologies to power customer success on path to zero emissions

semi on highway through the forest

This is the first of a series of articles on powertrain technologies Cummins is looking to introduce on the path to zero emissions by 2050.


Internal combustion engine (ICE) technologies are an important transitory step for the trucking industry as Cummins pursues net-zero carbon by 2050 under its Destination Zero strategy, which is to go further, faster to reduce the greenhouse gas (GHG) and air quality impacts of its products. 

Cummins’ ICE technologies focus on advanced diesel, gas and hydrogen, which will provide clean, cost-effective power to customers in the years ahead and help Cummins achieve an interim goal of lowering emissions from newly sold products by 25% by 2030.

“Many Australian and New Zealand trucking businesses – owner-operators, small, medium and even large fleets – who are vital to both countries’ road transport efficiency into the future, will only remain in business with affordable technologies to reduce their carbon footprint,” says Mike Fowler, director and general manager of on-highway business for Cummins Asia Pacific.

He says getting to zero emissions in the heavy-duty trucking industry will not be a “light switch event” and that the pathway to the target will require some transition through lower carbon solutions while the economic, operational and infrastructure challenges of zero emission vehicles are solved.

Importantly, the industry needs multiple solutions to meet the needs of all on and off-highway customers with their variety of duty cycles and operating environments. The pace of transition will not only be driven by customer requirements but also infrastructure investment and regulatory advancements.

“There are still significant efficiency gains Cummins can achieve with diesel internal combustion technology to further reduce greenhouse gas (CO2) emissions and atmospheric pollutants,” Fowler points out.

“Heavy-duty trucking today requires the power density and operational range that only diesel internal combustion can provide,” he adds. “This is particularly relevant in Australia with its challenging operating environment.”

A new big bore Cummins diesel engine in the pipeline will further reduce carbon emissions with fuel savings of more than 10% compared with Cummins’ current X15 Euro 6 engine.

Cummins Inc. president and CEO, Jennifer Rumsey, emphasized recently that an important step in getting to net-zero was about making existing technologies more efficient.

“We can make a big difference by improving the efficiency of diesel engines in the next decade. Those products will be out there for many years beyond that. We shouldn’t just focus on zero only, we need a combination of advancing zero and improving engine-based products that we have today.”

Cummins recently announced the development of natural gas and hydrogen internal combustion engines – designated X15N and X15H – which were showcased at the Advanced Clean Transportation (ACT) Expo, North America’s largest advanced transportation technology and clean fleet event, where they attracted a lot of attention.

Debuting a clean hydrogen-burning engine is one thing. Having the fuel infrastructure in place to support it is another. The good news in Australia is that Queensland, New South Wales and Victorian state governments recently announcing collaboration on a renewable ‘green’ hydrogen refuelling network for heavy trucks on the nation’s most critical roads and highways, starting with the Hume Highway, Pacific Highway and Newell Highway.

NSW aims to have 10,000 heavy vehicles powered by green hydrogen by 2030.

Both the X15H and X15N are based on an entirely new 15-litre design which offers a weight saving of around 200 kg over the current X15 diesel engine. 

They also highlight Cummins’ new ‘fuel-agnostic’ engine platform – an industry first – which offers different versions of the same base engine. The bottom-end of the engines looks the same, while unique cylinder heads are designed to accommodate a different low or zero carbon fuel.  Each engine within the platform can run on one specific fuel using familiar internal combustion engine technology.

Hydrogen is an energy dense, carbon-free fuel and offers benefits in terms of range, payloads and fast refuelling times. The hydrogen engine itself is not completely CO2-free in that small amounts of oil in the crankcase still make their way to the combustion chamber where they’re burned, emitting a small amount of carbon through the tailpipe. NOX levels drop substantially in hydrogen combustion versus conventional diesel, by at least 75% from today’s most stringent standards.
The hydrogen engine offers performance comparable to a diesel and is virtually a drop-in replacement for a traditional engine, the major modification to a truck’s architecture being the addition of a hydrogen fuel system.

The natural gas X15N is scheduled for release in 2024 and will be offered with peak ratings of 500 hp and 1850 lb ft of torque. The engine can achieve carbon negativity when fuelled with renewable natural gas – or biogas – using methane collected from organic waste as the primary fuel source.

Premier US fleet Werner Enterprises, which is focused on reducing its carbon footprint, will begin validation and integration of the X15H and X15N in its trucks in the second half of 2022.
 

Redirecting to
cummins.com

The information you are looking for is on
cummins.com

We are launching that site for you now.

Thank you.