Hydrogen internal combustion engines and hydrogen fuel cells

A convoy of trucks on a highway leading through a green forest.

Regulations limiting greenhouse gas emissions (GHGs) from motor vehicles are tightening around the world. With this, both hydrogen engines and hydrogen fuel cells are receiving an increasing interest. 

Given medium and heavy-duty trucks are a major source of CO2 emissions, the transportation sector’s journey to destination zero features both technologies.

As more truck makers join the ranks of auto companies developing CO2-free or CO2-neutral alternative to gasoline and diesel vehicles, let’s look at the similarities and differences between hydrogen engines and fuel cells.


Click on the 'blue' spots on this interactive to learn more about internal combustion engines and fuel cell engines.

 

Hydrogen engines and fuel cells: Similarities and differences in how they work?

Both hydrogen internal combustion engines and hydrogen fuel cells can power vehicles using hydrogen, a zero-carbon fuel.

Hydrogen engines burn hydrogen in an internal combustion engine, in just the same way gasoline is used in an engine. Hydrogen internal combustion engines (Hydrogen ICE) are nearly identical to traditional spark-ignition engines. You can read more about how hydrogen engines work if interested.

Fuel cell hydrogen vehicles (FCEVs) generate electricity from hydrogen in a device known as a fuel cell, and use that electricity in an electric motor much like an electric vehicle. 

Hydrogen engines and fuel cells: Complementary use-cases

Hydrogen engines and hydrogen fuel cells offer complementary use cases. 

Internal combustion engines tend to be most efficient under high load—which is to say, when they work harder. FCEVs, in contrast, are most efficient at lower loads. You can read more examples of hydrogen engines in mobility and transportation. These range from heavy-duty trucking to construction.

So, for heavy trucks that tend to spend most of their time hauling the biggest load they can pull, internal combustion engines are usually the ideal and efficient choice. On the other hand, vehicles that frequently operate without any load—tow trucks or concrete mixer trucks, for example, may be more efficient with a fuel cell. Fuel cell electric vehicles can also capture energy through regenerative braking in very transient duty cycles, improving their overall efficiency.  

Hydrogen engines can also operate as standalone powertrain solutions and handle transient response demand without the need for a battery pack. Fuel cells combined with battery packs can also accomplish the same.

click to view infographic
Click to view infographic

Hydrogen engines and fuel cells: Similarities in emissions

Hydrogen engines and hydrogen fuel cells also have similar emissions profiles.

FCEVs, actually, produce no emissions at all besides water vapor. This is a very attractive feature for vehicles operating in closed spaces or spaces with limited ventilation. 

Hydrogen engines release near zero, trace amounts of CO2 (from ambient air and lubrication oil), but can produce nitrogen oxides, or NOx. As a result, they are not ideal for indoor use and require exhaust aftertreatments to reduce NOx emissions.

Hydrogen engines and fuel cells: Hydrogen fuel considerations

Yes, both hydrogen engines and fuel cells use hydrogen fuel; but there is more to this story.

Hydrogen engines often are able to operate with lower grade hydrogen. This becomes handy for specific use cases. For example, you might have a site where hydrogen can be produced on site using steam methane reforming and carbon capture and storing (CCS). This hydrogen then can be used in hydrogen engines without the need for purification. 

The hydrogen engine’s robustness to impurities is also handy for a transportation industry where the transition to high quality green hydrogen will take time.

Hydrogen engines and fuel cells: Varying maturity levels

Finally, hydrogen engines and hydrogen fuel cell technologies have different levels of maturity. 

Internal combustion engines have been universally used for decades and are supported by extensive service networks. Rugged engines that can operate in dusty environments or that can be subjected to heavy vibrations are available in all sizes and configurations.

From the perspective of vehicle manufacturers and fleet operators, the switch to hydrogen engine drivetrains involves familiar parts and technology. Risk-averse end-users will find comfort in the tried-and-tested, reliable nature of internal combustion engines.

So it is not really the case that FCEVs and hydrogen ICEs are competing with one another. On the contrary, the development of one supports that of the other, since both drive the development of a common hydrogen production, transportation, and distribution infrastructure. Both also involve the same vehicle storage tanks. They are complementary technologies that are part of reducing vehicle and transportation emissions towards destination zero, now.
 


Never miss the latest and stay ahead. Sign-up below to receive the latest in technologies, products, industry news, and more. 

Jim Nebergall

Jim Nebergall

Jim Nebergall is General Manager of the Hydrogen Engine Business at Cummins Inc. and leads the company’s global efforts in commercializing hydrogen-fueled internal combustion engines. Hydrogen internal combustion engines are an important technology in the company’s accelerated path to decarbonization.    

Jim joined Cummins in 2002 and has held numerous leadership roles across the company. Most recently, Jim was the Director of Product Strategy and Management for the North American on-highway engine business. Jim is passionate about innovation and has dedicated his Cummins career to advancing technology that improves the environment. He pushed the boundaries of customer-focused innovation to position Cummins as the leading powertrain supplier of choice, managing a portfolio ranging from advanced diesel and natural gas to hybrid powertrains. 

Jim graduated from Purdue University with a bachelor’s degree in electrical and computer engineering. In 2007, he completed his Master of Business Administration degree from Indiana University.

Cummins Custompaks are being used for water management as Thailand struggles with its water crisis

CustomPak on site

Water crisis

Sixty Cummins Inc. CustomPaks are in service in Thailand as part of a critical water management plan aimed at easing the country’s water crisis – a crisis that has caused enormous economic and social damage and stirred conflict among communities.

Over the past several decades, Thailand has continually faced water problems caused by severe drought. Water reserves in dams and reservoirs are insufficient while water resources are often contaminated with toxins caused by urban communities and the industrial and agricultural sectors.

Severe flooding is a threat, too, at a time when the realities of climate change are hanging over the country.

As a result, the allocation of precious water resources, which must be shared among various stakeholders including new and existing industry, large and small agriculture, and cities and villages has become a flashpoint.

Kittithanapat Engineering Co. (KTP), has been involved in the water management system since 1996, working closely with authorities such as the Royal Irrigation Department, Department of Water Resources, Bangkok Metropolitan Authority and others.

CustomPaks on site

600 hp CustomPaks

To help KTP meet its often urgent requirements, Cummins DKSH (Thailand) has recently supplied 60 Australian-built CustomPaks – 45 powered by Cummins’ X15 engine rated at 600 hp, and 15 powered by the QSL9 rated at 325 hp. These fully self-contained powerpacks are emissions certified to Tier 3.

The CustomPaks are coupled to hydraulically-driven, large-volume submersible water pumps sourced by KTP from US company Moving Water Industries (MWI); KTP is the exclusive distributor in Thailand for these MWI Hydroflo pumps.

Prior to Cummins’ involvement, KTP was using another diesel engine brand but service support wasn’t up to the standard required.

Long-serving KTP engineer Kittisak Thanasoot says Cummins DKSH’s reputation for technical and aftersales support along with the reliability of the Cummins product were a key reason behind KTP’s decision to specify the CustomPaks for the Royal Irrigation Department.

The ability of Cummins DKSH to respond to short delivery times was also important.

“Supplying large quantities of high horsepower diesel engines for emergency situations such as flash flooding can be a challenge for KTP,” says Kittisak Thanasoot.

“Responding to the needs of the government agencies to manage such problems in a timely manner and with least impact on communities, KTP has found the answer in our partnership with Cummins DKSH.”

Power, pride and passion

Parked semi truck

The switch back to Cummins power has been beneficial for iconic New Zealand company Uhlenberg Haulage. It's all about whole-of-life costs.

Uhlenberg Haulage is closing in on 60 years in business, having been founded in 1966 by Mike and Carol Uhlenberg.

Based in Eltham, Taranaki, in New Zealand’s North Island, the operation is today owned and operated by their sons Chris, Daryl and Tony Uhlenberg.

Describing the Uhlenbergs as “old school family truckies”, Daryl talks about the company’s time-honored journey with a definite tone of pride, especially the work of his parents in laying the foundations for what is today an iconic fleet in its own right.

Cummins Inc. made its debut in the Uhlenberg fleet in 1971 with an NH250 powering a second-hand Kenworth K923 used in logging. A second Kenworth, a new W924 with a Cummins NTC335, followed soon after hauling an LPG tanker.

The Uhlenberg operation today comprises 40 prime movers and a variety of trailing gear to cater for the myriad of a jobs the fleet is involved in.

A number of Peterbilts feature in the fleet although Kenworth is now the brand of choice with six new units to be delivered over the next 12 months to cater for business growth.

Cummins’ X15 Euro 5 engine rated at 550 or 600 hp is the preferred power specification, with 18 red engines currently in the fleet.

Uhlenberg family in front of truck

Whole-of-life support

“The switch to Cummins has been a very good experience for us. We have nothing but praise for the Cummins organization,” says Daryl.

“The whole-of-life picture is the key thing for us and we’ve got that nailed with the support we get from Cummins – parts availability, scheduled maintenance, life expectancy and in-frame rebuilds.

“So the red engines turn up, we run them to life, which is 900,000 to 1.2 million kilometers, and then Cummins does an in-frame overhaul in a timely manner. If there’s an issue, parts and support are close by.

“The support we get from Cummins Palmerston North is fantastic, second to none.”

Daryl recently looked under a Kenworth that was in the workshop for a service and was surprised to see no oil leaking from the one-million-kilometer X15. “I remember when I was a fitter we had to wear a raincoat when working under a truck,” he jokes.

Fuel agnostic

Acknowledging that the push to decarbonize is now “very real”, Daryl likes the idea of Cummins’ fuel agnostic concept where one base internal combustion engine, optimized to run on diesel, can also be customized to run on ultra-low and zero-carbon fuels like renewable natural gas and hydrogen.

“My father was a pioneer of linehaul trucking in New Zealand and he always embraced new technology. He was never scared of it,” he says.

“I tend to be a little more cautious but I can see where a 500 hp natural gas or hydrogen engine would work for us in short haul applications,” he admits. “We’re certainly willing to look closely at these alternative fuel technologies when suitable infrastructure is in place.”

Redirecting to
cummins.com

The information you are looking for is on
cummins.com

We are launching that site for you now.

Thank you.