Pros and cons of different fuels in your decarbonization journey

gears on a green background

Diesel is the fuel of choice for a range of products including generator sets and engines used in marine, rail and construction and mining equipment, but there are alternatives. With concerns about the climate rising, businesses, shareholders and lawmakers are looking at replacement options for diesel in vehicles and power generation applications. Emission reductions across alternative fuels should also be considered when making a selection.

Diesel – why has it been popular and what has changed?

Diesel has been the fuel of choice for decades, with good reason. It is relatively cheap, widely available and performs well. Diesel engines just keep on going, with little maintenance. Refueling is easy as the infrastructure has been in place a long time and is universally available. However, diesel is a fossil fuel made from crude oil and, when burned, releases greenhouse gases.

Tailpipe emissions also include NOx and particulates, which can negatively affect air quality. As such, regulations on the use of diesel are tightening in countries around the world.

Renewable diesel, advantages and disadvantages 

Hydrotreated vegetable oil (HVO), or ‘renewable diesel’, is made from vegetable oils and animal fats and oils. It can be used in select diesel engines without modification, and used as a ‘drop-in’ replacement for diesel, it performs equally well. Net CO₂ emissions for HVO are typically 70% lower than diesel, depending on how the fuel is produced and distributed, as the renewable feedstock seed to make HVO absorbs carbon when growing. Tailpipe emissions are also cleaner than those from diesel. HVO, however, remains more expensive than diesel, particularly where there are no government subsidies and incentives. Additionally, the use of HVO is limited by the availability of feedstock.

Biodiesel and a closer look at blends that can be advantageous

Biodiesel is a renewable fuel made by esterifying fats such as vegetable oil, animal fats or used cooking oil – the same feedstock that can also be used to produce HVO. It is most often blended with diesel to reduce net CO₂ and other polluting emissions. Blends with varying proportions of biodiesel are available. B20 blends, which contain 20% of biodiesel is a common blend which advantageously balances cost and emissions, and can generally be used in engines with no modifications. Higher blends are less commonly used directly as a transportation fuel because they require engine modifications, can cause material compatibility issues, and present certain storage difficulties. 

Natural gas – why is it the most widely used alternative fuel?

Natural gas has been used as a fuel in vehicles for decades. Today it is the most widely used alternative fuel. Natural gas vehicles perform as well as diesel vehicles, but often with lower CO₂ and emissions such as NOx and particulates. Natural gas is either stored on board in liquid (LNG) or compressed (CNG) form. The choice depends on the infrastructure. In areas where natural gas infrastructure exists, or where it makes sense to install it, say, for a fleet of vehicles travelling in a local area, it can be a sound economic and environmental choice. 

Renewable natural gas usage in your decarbonization journey

Renewable natural gas is obtained from biogas, a methane-rich gas resulting from the fermentation of organic waste such as cow manure, sewage sludge or landfill organics. Renewable natural gas can allow engines to effectively reach carbon-neutrality. In some cases, such as when biogas is a by-product of naturally occurring fermentation and would be released into the atmosphere if not for its use as a fuel, renewable natural gas can even be a carbon-negative fuel. Adequately processed, renewable natural gas is nearly indistinguishable from natural gas. It can be used in any natural gas vehicles and in many industrial applications, such as power generation. 

Natural gas and hydrogen blends – benefits and challenges 

Green hydrogen can be blended with natural gas and injected into a natural gas pipeline. This automatically reduces the carbon intensity of all natural gas applications served by the pipeline. Using pipeline systems to distribute fuel blends that include hydrogen is not new and, for example, has been practiced for years on the island of Oahu in Hawaii (U.S.).

Gas utilities all over the world are assessing the feasibility of blending green hydrogen into their distribution systems. Various pilot schemes plan to introduce renewably produced hydrogen into natural gas pipelines, replacing up to 20% of natural gas content by volume in distribution systems. The advantage is an immediate reduction in greenhouse gas emissions. However, higher concentrations of hydrogen are thought to bring multiple challenges in terms of the fuel’s effect on infrastructure and gas appliances.

Green hydrogen and why it could be the green energy carrier of the future 

Green hydrogen, or hydrogen made using renewable energy, may be the green energy carrier of the future. Green hydrogen can function as a source for both fuel cell electric vehicles and vehicles equipped with an internal combustion engine, specially modified for hydrogen. When powered by green hydrogen, a fuel cell coupled with an electric motor is often more efficient than an internal combustion engine running on gasoline.

Personal vehicles running on hydrogen have been available for years, yet have not received mainstream appeal. Meanwhile, with increasing renewable energy sources and the rolling out of hydrogen refueling stations, particularly in California (U.S.), hydrogen may make a lot more sense for heavy-duty commercial vehicles. This is why Cummins Inc. is currently developing a 15-liter and a 6.7-liter hydrogen engine.

Methanol; a fuel to be considered in your decarbonization journey  

Methanol, also known as wood alcohol, is a promising energy carrier that is today primarily derived from natural gas. Methanol is rarely made from green hydrogen today however this is predicted to change in the near future.  

Unlike hydrogen, methanol is a liquid at ambient temperature, making it easier to store and handle. It can be readily synthetized from hydrogen using well-known industrial processes. Methanol is a high-octane fuel which, in the right engine, can match the performance of a diesel fuel. It can be used in a variety of applications, including as a fuel for internal combustion engines. In fact, methanol is a performance fuel that has been used for decades in racing vehicles such as Indy cars and monster trucks. Primarily for safety reasons—methanol fires are easier to extinguish and burn without smoke.

Ammonia and green ammonia – how to they compare to other alternative fuels?

Like methanol, ammonia is another energy carrier that can be manufactured from green hydrogen. Being a liquid, it is easier to store and to transport by road, rail or vessel than gaseous hydrogen. However, it is toxic to humans, and creates NOx emissions during combustion, but advocates are confident these challenges can be managed with additional equipment and safety measures. 

Green ammonia is a promising substitute for ammonia obtained by traditional means in industrial applications such as manufacturing of fertilizer. Green ammonia can also be used to power internal combustion engines, although it is best suited for very large engines such as those used for marine propulsion. However, the supply chain for green ammonia is not yet sufficiently mature for widescale adoption. While ammonia is much easier to store than hydrogen, it has a significantly lower energy density than diesel fuel. This requires larger fuel tanks than a comparable diesel engine would use. It is important to remember that the state of adoption among alternative fuels can vary

Cummins Office Building

Cummins Inc.

Cummins, a global power technology leader, is a corporation of complementary business segments that design, manufacture, distribute and service a broad portfolio of power solutions. The company’s products range from internal combustion, electric and hybrid integrated power solutions and components including filtration, aftertreatment, turbochargers, fuel systems, controls systems, air handling systems, automated transmissions, electric power generation systems, microgrid controls, batteries, electrolyzers and fuel cell products.

How is the United States investing in clean energy?

GR hero

Our planet is facing a dire crisis: carbon dioxide concentrations in the atmosphere continue to soar above record highs. If gone unaddressed, the collective stress of climate change will produce an irreparable impact. Our health, energy, water, and food ecosystems are at risk. 

As it stands, there are many long-term effects of climate change. In North America, climate change is forecasted to cause decreasing snowpack in the western mountains. It will also lead to a 5–20% increase in yields of rain-fed agriculture and great intensity of heat waves. In fact, over the last five years, the United States has incurred roughly $120 billion a year in damages as a result of natural disasters caused by extreme weather and climate events.

Beyond natural catastrophes, climatic risks to the United States will have a cascading effect on the country’s interconnected ecosystems. Reduced labor and overall economic productivity, and altered crop yields, will disproportionately harm lower-income and marginalized populations. These groups lack the resources to prepare or cope with extreme weather and climate events.

The world is investing in clean energy innovation

Combating the intensifying climate crisis requires a strategic combination of research and development (R&D), innovation, technology — and bold attempts.

Around the globe, countries are investing in clean energy to contribute to a livable planet now and for generations to come. In 2022, the US passed the Inflation Reduction Act, which includes a historic $370 billion investment to address the climate crisis. The Inflation Reduction Act provides tax credits and incentives to power homes, businesses, and communities with clean energy by 2030. The Act will increase investments in the fastest-growing power generation technologies, solar and wind. It will also advance cost-saving clean energy projects and protect two million acres of national forests. These initiatives are in addition to substantial tax credits and rebates offered to families and businesses in the United States.
Consequently, a stronger clean energy economy will contribute to overall economic growth and competition. As a result, there will be millions of new well-paying jobs for Americans to make clean energy.

It is possible to start decarbonizing now

Governmental policy strategies and investments in decarbonization technologies are part of the solution to produce increasingly cheap, dependable, and clean energy.

Strong communities and vibrant economies depend on a healthier planet. As a global power technology leader, Cummins is in a unique position to power customer success by leading during this energy transition. We intent to do so by providing customers with the right technology at the right time, understanding of their needs and applications.

We think of this journey to carbon neutrality in two distinct and complementary ways. First, by innovating zero-emission solutions and introducing them in markets and applications where the infrastructure, development and deployment are ready. Secondly, by advancing internal combustion engines through efficiency improvement and by running them on cleaner alternative fuels for a well-to-wheels solution.

Through Destination Zero, we are advancing low- and no-carbon platforms. This includes diesel and natural gas engines, hybrid, and electric platforms, as well as powertrain components, controls, and related technologies.

Join Cummins in powering a better tomorrow

Cummins environmental sustainability strategy includes goals timed for 2030. Progress toward the reduction of carbon emissions from company plants and facilities — in addition to our products — is in full swing. For more than one hundred years, we have brought technological solutions to market. As a power solutions leader, we will continue to power a more prosperous world for today and tomorrow. Are you ready to consider investing in new power solutions?

Traci Kraus headshot

Traci Kraus

Traci Kraus is a Director of Government Relations where she leads US federal advocacy for Cummins. She focuses on energy, climate, hydrogen, transportation and budget legislative and regulatory issues. 

Prior to joining Cummins, Traci worked for former U.S. Senator Russ Feingold.  She has a Master’s in Public Administration from the George Washington University and B.A.s in Government and Politics and Communication from the University of Maryland in College Park. She is originally from Chicago, and now lives outside of Washington, D.C. with her husband, Aaron and two children Liam (8) and Sloane (5).

Twelve ways to prepare for winter power outages

home generator in the snow

When a freak winter storm struck Texas in February 2021, the state’s power grid couldn’t handle it. Nearly five million people suddenly found themselves without electricity in freezing temperatures, causing a humanitarian crisis. 

The worst power outage in Texas’ history was a wake-up call. Winter power outages can be serious even if you live in a typically warm climate. 

Here are some time tips in case your family ever finds itself without power in the middle of winter:

  1. Add insulation to your attic — In addition to helping keep the cold out and the heat in, the proper amount of insulation can help prevent ice dams from forming on the edges of your roof, which can lead to water damage inside your home.
  2. Stock up on non-perishable food and water — Stow enough food that does not need to be cooked and water for everyone in the family  Make sure you have a manual can opener, too.
  3. Don’t use a gas stove or oven for heat — During a power outage your home has less airflow. This increases the risk of carbon monoxide poisoning if you run the stove or oven continuously. Gas stoves are designed for intermittent, short-term use and don’t have all the safety features of a gas furnace.
  4. Use a wood-burning fireplace if you have one — Just make sure you have enough seasoned firewood on hand and your chimney regularly cleaned and inspected.
  5. Download our Power Outage Ultimate Checklist — It provides in-depth information about what to do before, during and after an outage. It even shows you what to do for children, pets and family members with medical needs. You can download it here.
  6. Dress in layers — Wear a polypropylene base layer, then add a warm shirt and a sweater or cardigan. Wear synthetic or wool insulated pants instead of jeans or khakis. Cotton fabric is not a good insulator. Make sure you have warm mittens, woolen socks and a knit cap also.
  7. Buy flashlights and extra batteries —Make sure you have enough for every family member. If the temperature gets too cold inside, alkaline batteries won’t perform very well. Either keep them close to your body (to keep them warm) until you need to use them or invest in some lithium-ion batteries, which perform better in the cold.
  8. Keep mobile phones charged and gas tanks full — Your phones and your vehicles are your lifelines to the outside world. If you have an EV, make sure it’s fully charged.
  9. Protect your pipes — As water freezes, it expands. This can burst the pipes in your home. Add insulation to your exposed pipes. During a power outage, you can also open each faucet to allow a slow drip. This water flow will help keep the water from freezing in the pipes.
  10. Winterproof your home — Seal doors and windows to reduce drafts so you keep as much heat indoors as possible.
  11. Invest in a whole-home standby generator — For the ultimate peace of mind, consider one of the Cummins QuietConnect™ home standby generators. In the event of a power outage, your generator will automatically switch on and keep your home powered. 
  12. Install carbon monoxide detectors with battery backups — Place them in central locations on every floor so if any carbon monoxide gets in the home, you are immediately alerted.

Power outages are always inconvenient. But winter power outages can be downright scary. To see the different ways that Cummins can help keep your family warm and cozy during a winter power outage, visit us at cummins.com/na/generators/home-standby/whole-house-and-portable or find a local dealer at cummins.com/na/generators/home-standby/find-a-dealer.

Cummins Office Building

Cummins Inc.

Cummins, a global power technology leader, is a corporation of complementary business segments that design, manufacture, distribute and service a broad portfolio of power solutions. The company’s products range from internal combustion, electric and hybrid integrated power solutions and components including filtration, aftertreatment, turbochargers, fuel systems, controls systems, air handling systems, automated transmissions, electric power generation systems, microgrid controls, batteries, electrolyzers and fuel cell products.

Cummins ICE technologies to power customer success on path to zero emissions

semi on highway through the forest

This is the first of a series of articles on powertrain technologies Cummins is looking to introduce on the path to zero emissions by 2050.


Internal combustion engine (ICE) technologies are an important transitory step for the trucking industry as Cummins pursues net-zero carbon by 2050 under its Destination Zero strategy, which is to go further, faster to reduce the greenhouse gas (GHG) and air quality impacts of its products. 

Cummins’ ICE technologies focus on advanced diesel, gas and hydrogen, which will provide clean, cost-effective power to customers in the years ahead and help Cummins achieve an interim goal of lowering emissions from newly sold products by 25% by 2030.

“Many Australian and New Zealand trucking businesses – owner-operators, small, medium and even large fleets – who are vital to both countries’ road transport efficiency into the future, will only remain in business with affordable technologies to reduce their carbon footprint,” says Mike Fowler, director and general manager of on-highway business for Cummins Asia Pacific.

He says getting to zero emissions in the heavy-duty trucking industry will not be a “light switch event” and that the pathway to the target will require some transition through lower carbon solutions while the economic, operational and infrastructure challenges of zero emission vehicles are solved.

Importantly, the industry needs multiple solutions to meet the needs of all on and off-highway customers with their variety of duty cycles and operating environments. The pace of transition will not only be driven by customer requirements but also infrastructure investment and regulatory advancements.

“There are still significant efficiency gains Cummins can achieve with diesel internal combustion technology to further reduce greenhouse gas (CO2) emissions and atmospheric pollutants,” Fowler points out.

“Heavy-duty trucking today requires the power density and operational range that only diesel internal combustion can provide,” he adds. “This is particularly relevant in Australia with its challenging operating environment.”

A new big bore Cummins diesel engine in the pipeline will further reduce carbon emissions with fuel savings of more than 10% compared with Cummins’ current X15 Euro 6 engine.

Cummins Inc. president and CEO, Jennifer Rumsey, emphasized recently that an important step in getting to net-zero was about making existing technologies more efficient.

“We can make a big difference by improving the efficiency of diesel engines in the next decade. Those products will be out there for many years beyond that. We shouldn’t just focus on zero only, we need a combination of advancing zero and improving engine-based products that we have today.”

Cummins recently announced the development of natural gas and hydrogen internal combustion engines – designated X15N and X15H – which were showcased at the Advanced Clean Transportation (ACT) Expo, North America’s largest advanced transportation technology and clean fleet event, where they attracted a lot of attention.

Debuting a clean hydrogen-burning engine is one thing. Having the fuel infrastructure in place to support it is another. The good news in Australia is that Queensland, New South Wales and Victorian state governments recently announcing collaboration on a renewable ‘green’ hydrogen refuelling network for heavy trucks on the nation’s most critical roads and highways, starting with the Hume Highway, Pacific Highway and Newell Highway.

NSW aims to have 10,000 heavy vehicles powered by green hydrogen by 2030.

Both the X15H and X15N are based on an entirely new 15-litre design which offers a weight saving of around 200 kg over the current X15 diesel engine. 

They also highlight Cummins’ new ‘fuel-agnostic’ engine platform – an industry first – which offers different versions of the same base engine. The bottom-end of the engines looks the same, while unique cylinder heads are designed to accommodate a different low or zero carbon fuel.  Each engine within the platform can run on one specific fuel using familiar internal combustion engine technology.

Hydrogen is an energy dense, carbon-free fuel and offers benefits in terms of range, payloads and fast refuelling times. The hydrogen engine itself is not completely CO2-free in that small amounts of oil in the crankcase still make their way to the combustion chamber where they’re burned, emitting a small amount of carbon through the tailpipe. NOX levels drop substantially in hydrogen combustion versus conventional diesel, by at least 75% from today’s most stringent standards.
The hydrogen engine offers performance comparable to a diesel and is virtually a drop-in replacement for a traditional engine, the major modification to a truck’s architecture being the addition of a hydrogen fuel system.

The natural gas X15N is scheduled for release in 2024 and will be offered with peak ratings of 500 hp and 1850 lb ft of torque. The engine can achieve carbon negativity when fuelled with renewable natural gas – or biogas – using methane collected from organic waste as the primary fuel source.

Premier US fleet Werner Enterprises, which is focused on reducing its carbon footprint, will begin validation and integration of the X15H and X15N in its trucks in the second half of 2022.
 

Redirecting to
cummins.com

The information you are looking for is on
cummins.com

We are launching that site for you now.

Thank you.